Phase II Environmental Site Assessment (ESA)

For

641 West Avenue Lockport, Niagara County, New York

Prepared by:

C&S Engineers, Inc. 141 Elm Street Suite 100 Buffalo, New York 14203

Prepared for:

Niagara County Department of Economic Development 6311 Inducon Corporate Drive Sanborn, New York 14132

> July 2019 Revised September 2019

Table of Contents

EXI	ECUTIVE SUMMARY	iv
4.0		_
<u>1.0</u>	INTRODUCTION	1
1.1	SITE DESCRIPTION	1
		2
1.2	PHASE II ESA SCOPE AND OBJECTIVES	2
<u>2.0</u>	SITE INVESTIGATION METHODS	2
2.1	GEOPHYSICAL SURVEY	2
2.2	SUBSURFACE SOIL SAMPLING	2
2.3	GROUNDWATER SAMPLING	3
2.4	SUB-SLAB/AIR SAMPLING	3
2.5	ASBESTOS AND LEAD-BASED PAINT SURVEY	4
2.6	QUALITY ASSURANCE, QUALITY CONTROL, AND DATA VALIDATION	5
<u>3.0</u>	PHASE II ESA FINDINGS	5
3.1	SUBSURFACE CONDITIONS	5
	3.1.1 SITE STRATIGRAPHY	5
	3.1.2 Groundwater Conditions	7
3.2	ANALYTICAL RESULTS	7
	3.2.1 SUBSURFACE SOIL SAMPLING RESULTS	7
	3.2.2 GROUNDWATER SAMPLING RESULTS	10
	3.2.3 SUB-SLAB/AIR SAMPLING RESULTS	10
<u>4.0</u>	PHASE II ESA SUMMARY	12
4.1	SUMMARY OF FINDINGS	12
4.2	DISCUSSION AND CONCLUSIONS	14
<u>5.0</u>	DISCLAIMER	15
6.0	NEXT STEPS	16

FOLLOWING TEXT

Environmental Professional Statement and Qualifications and Resume

TABLES

Table 1	Subsurface Soil Sample Results
Table 2	Groundwater Sample Results
Table 3	Air/Sub-Slab Sample Results
Table 3-1	Summary of Subsurface Soil Samples [In-Text]
Table 3-2	Summary of Groundwater Samples [In-Text]

FIGURES

Figure 1	Site Location
Figure 2	Soil Sample Locations
Figure 3	Groundwater Sample Locations
Figure 4	Air/Sub-Slab Sample Locations

APPENDICES

Appendix A	Soil Boring Logs and Well Construction Logs
Appendix B	Laboratory Analytical Reports - Soil
Appendix C	Laboratory Analytical Reports - Groundwater
Appendix D	Laboratory Analytical Reports - Air/Sub-Slab
Appendix E	Asbestos and Lead-Based Paint Survey Reports
Appendix F	Applus RTD Geophysical Survey Report
Appendix G	Data Usability Summary Reports (DUSR)

EXECUTIVE SUMMARY

The purpose of this Phase II Environmental Site Assessment (ESA) is to advance the findings of a Phase I ESA conducted in September 2016 by LiRo Engineers, Inc. at 641 West Avenue, Lockport, Niagara County, New York (Site). The Site, currently unoccupied, is located in a mixed commercial and light industrial area and is comprised of a one-story commercial structure and a partially-paved lot, totaling approximately 0.1 acre. The structure appears to include a small office/lobby area and two garage bays. The exterior portions of the Site were noted to include asphalt paved, concrete covered, and grass-covered areas. Overgrown vegetation was also noted around the perimeter of the property and structure. A former pump island was also noted in front of the structure to the west.

Based on historical records and observations made at the time of the Site reconnaissance, the Site has historically been utilized as a gasoline station and automotive repair facility and contains underground storage tanks (USTs) toward the center of the property. Another potential tank is located north of the one-story auto repair shop along the exterior of the building. Use of the Site as a gasoline station/automotive repair facility dates back to the 1950s when the Site was first developed.

The scope of this Phase II ESA included the following elements:

- Geophysical Survey
- Subsurface Soil Sampling
- Groundwater Sampling
- Sub-Slab and Air Sampling
- Asbestos and Lead-Based Paint Survey
- Quality Assurance, Quality Control, and Data Validation

Summary of Findings

1. Urban fill material was generally observed across the Site from beneath the topsoil to approximately two feet to five feet below grade surface (bgs). The fill material consists of a mixture of different soil materials (sand, silt, clay), angular gravel, concrete, and rock material. Native silty-clay was observed beneath the fill material. Bedrock or refusal was generally encountered around six to nine feet bgs.

- 2. The geophysical survey confirmed the presence of three USTs in the central portion of the Site, and possibly one additional, smaller UST was noted on the northern edge of the building on the Site. Several utilities were also confirmed and marked in the field.
- 3. Screening of soil borings included assessment for visual impairment, olfactory indications of impairment, and total VOCs using a photoionization detector (PID). Max PID readings for the borings ranged from 3.1 to 351.8 ppm. No notable odors were observed in any of the soil borings. Seven subsurface soil samples (including one duplicate) were collected from the 10 subsurface borings advanced on the Site. Soil borings EB-1, EB-3, EB-4, EB-5, EB-7, and EB-9 were selected for sampling based on visual observations (darker/stained soils, presence of angular gravel, etc) and elevated PID readings. The depth of sample collection at each of the selected borings was determined based on max PID readings, and notable visual observations (darker/stained soils) made for each of the borings, potentially indicative of subsurface contamination.
- 4. Elevated VOC and SVOC concentrations were observed in subsurface soil samples collected adjacent to the USTs. Elevated VOC and SVOC concentrations were also observed in groundwater samples collected from monitoring wells advanced adjacent to the tanks. Specifically, those VOC and SVOC compounds observed as elevated in subsurface soil and groundwater samples are primarily petroleum/BTEX-type compounds, which may be indicative of a release of petroleum product material from the USTs and subsequent contamination of subsurface soils and groundwater on the Site.
- 5. Groundwater was observed at depths of approximately six to seven feet bgs in three monitoring wells installed on the Site. Concentrations for numerous VOCs and SVOCs in groundwater samples collected from all three monitoring wells exceeded NYSDEC TOGS Series 1.1.1 Groundwater Standards. A summary of the number of individual VOC and SVOC compounds that were observed to exceed TOGS Groundwater Standards in samples collected from each of three groundwater monitoring wells is as follows:

• MW-1

VOCs: one individual compoundSVOCs: five individual compounds

• MW-2

VOCs: 12 individual compoundsSVOCs: seven individual compounds

• MW-3

VOCs: seven individual compoundsSVOCs: six individual compounds

- 6. Six individual volatile organic compounds (VOCs) were observed to exceed NYSDEC Unrestricted Use Soil Cleanup Objective (SCO) criteria in two of seven subsurface soil samples collected (samples EB-3 and EB-4), which were collected at a depth of six to seven foot bgs. Both EB-3 and EB-4 were located in the southwest portion of the Site adjacent to a concrete pad used previously by the auto repair shop. The use of the pad is unconfirmed, but appears to have functioned as the fuel island for users/patrons of the Site.
- 7. Of the two sub-slab samples collected within the existing structure on the Site, only one VOC compound (trichloroethene) was detected in exceedance of *NYSDOH* Matrix A guidance value for indoor air (0.2 μg/m³), but below the Matrix A guidance value for sub-slab vapor (6 μg/m³) in one sub-slab sample (SS-02). Carbon tetrachloride was detected in exceedance of *NYSDOH Matrix A Indoor Air Concentration* guidance values in all four air samples collected (three indoor and one outdoor).
- 8. The asbestos survey confirmed the presence of non-friable asbestos in approximately 210 linear feet of window glaze on the interior of the structure, approximately 775 linear feet of caulk, glaze, and tar on the exterior of the structure, and approximately 1,180 square feet of exterior roofing materials. The lead-based paint survey confirmed the presence of lead-based paint on five surfaces within the building.
- 9. The potential source of the elevated VOC and SVOC concentrations observed in subsurface soil, groundwater, sub-slab air, and air samples were not fully confirmed via this Phase II investigation. Considering that historical use of both the Site, and parcels adjacent to the Site, were similar and included car sales, gasoline stations, and automotive repair, it is possible that the elevated VOC and SVOC concentrations may be attributed to source(s) onsite, offsite, or both, RECs identified in the Phase I ESA, and in this Phase II ESA effort. Additional screening and sampling can be conducted if suggested/requested by the USEPA or NYSDEC to understand the full nature and extent of contamination, as well as the source of that contamination. The scope of additional screening and sampling of subsurface soils and groundwater can be expanded to include both PCBs and metals characterization. These contaminants may potentially be present in environmental media based on the types of activities that took place on the Site historically.

Discussion and Conclusions

Niagara County intends to acquire this site to redevelop the property for unknown future use. Subsurface soil, groundwater, and air/sub-slab impacts on the Site were identified during this assessment. VOC and SVOC concentrations above the NYSDEC Unrestricted Use SCO and CP-51 criteria were confirmed in the subsurface soils,

specifically in the southwest portion of the Site.

Considering that historical use of both the Site, and parcels adjacent to the Site, were similar and included car sales, gasoline stations, and automotive repair, it is possible that the elevated VOC and SVOC concentrations observed in subsurface soil and groundwater samples may be attributed to a combination of both onsite and offsite RECs identified in the Phase I ESA, and in this Phase II ESA effort.

Elevated levels of VOCs in sub-slab vapor and air were observed at the Site but the potential source was not confirmed, considering the same VOCs were not detected in groundwater and subsurface soils sampled from the Site as part of this effort.

Although no free petroleum product was observed during sampling conducted for this effort, exposure to contaminated subsurface soil materials and groundwater may be possible if invasive site improvement (i.e., earthwork, utility construction) is conducted in the future based on levels of VOCs and SVOCs confirmed in samples collected.

The potential source of the elevated VOC and SVOC concentrations observed in subsurface soil, groundwater, sub-slab air, and air samples were not fully confirmed via this Phase II investigation. Additional screening and sampling can be conducted if suggested/requested by the USEPA or NYSDEC to understand the full nature and extent of contamination, as well as the source of that contamination. The scope of additional screening and sampling of subsurface soils and groundwater can be expanded to include both PCBs and metals characterization. These contaminants may potentially be present in environmental media based on the types of activities that took place on the Site historically.

Depending on the intended final use, cleanup and redevelopment of the Site may be eligible for the NYS Brownfield Cleanup Program (BCP). The BCP provides a structured approach for the remediation of contamination sites. The program also provides tax benefits and a release of liability for the property owner. The results of this report should be reviewed by the NYSDEC to determine potential participation in this program.

1.0 <u>Introduction</u>

1.1 Site Description

The Site is located at 641 West Avenue (SBL 108.19-1-4) within the City of Lockport, Niagara County, New York (the Site). The property is comprised of a one-story auto repair facility and a partially-paved lot totaling approximately 0.1 acre. The Site location is shown in **Figure 1**. The Site was formerly used as an auto repair shop and contains underground storage tanks (USTs), toward the center of the property. Another potential tank is located north of the one-story auto repair shop along the exterior of the building.

Two Recognized Environmental Conditions (RECs) were identified and detailed in the Phase I ESA prepared by LiRo Engineers, Inc. in September 2016, including:

- 1. Based on historical records and observations made at the time of the Site reconnaissance, the Site has historically been utilized as a gasoline station and automotive repair facility. Use of the Site as a gasoline station/automotive repair facility dates back to the 1950s when the Site was first developed. City of Lockport records indicate that the Site was historically occupied by Keystone Gas Station and Richfield Gas Station. A photograph of the Site shows that gasoline pumps were located in front of the building. Additional municipal records indicate that one 2,000-gallon and two 4,000-gallon gasoline tanks were installed at the Site in 1960 and three 3,000-gallon gasoline tanks and one 500-gallon oil tank were also located on-site. The records also indicate that a waste oil tank was located on-site. There is no indication on whether these tanks were USTs or ASTs. Two gasoline pumps are recorded as being added in 1959 due to street repairs. During the Site reconnaissance, four suspect fill ports and four vent pipes were noted. No records regarding the use of the Site as a gasoline station or the presence of petroleum storage tanks were evident in the NYSDEC or USEPA database searches.
- 2. Historical and current uses of adjacent properties have included car sales, gasoline stations, and automotive repair.

The following ASTM non-scope environmental issue was also identified: the age of the building located on the Site (1950s) indicates asbestos-containing materials and lead based paint may have been used in the building materials located on the Site

No Controlled RECs, Historic RECs, or de Minimis conditions were identified.

1.2 Phase II ESA Scope and Objectives

The purpose of this Phase II ESA is to characterize the RECs identified in the previously conducted Phase I ESA and assess whether the soil, groundwater, or soil vapors has been impacted by these concerns. The scope of this Phase II ESA included the following elements:

- Geophysical Survey conducted April 19, 2019
- Subsurface Soil Sampling conducted April 29, 2019
- Groundwater Sampling conducted April 30, 2019
- Sub-Slab and Air Sampling conducted April 19, 2019
- Asbestos and Lead-Based Paint Survey conducted May 21, 2019
- Quality Assurance, Quality Control, and Data Validation

2.0 <u>SITE INVESTIGATION METHODS</u>

2.1 Geophysical Survey

Applus RTD conducted a geophysical survey at the Site on April 18, 2019. The goals of the survey were to determine the presence or absence of potential underground storage tanks (USTs), and to delineate the locations of buried utilities that could impact the subsurface drilling to be conducted on the Site as part of this effort. The geophysical techniques of Electromagnetic Induction (EM), Ground Penetrating Radar (GPR), and RadioDetection (RD) were used on the site to characterize the subsurface conditions.

The survey confirmed the presence of three USTs in the central portion of the Site, and possibly one additional, smaller UST was noted on the northern edge of the building on the Site. Several utilities were also confirmed and marked in the field. The final survey report provided by Applus RTD is included as Appendix F.

2.2 Subsurface Soil Sampling

A total of 10 soil borings were advanced on the Site from ground surface to approximately refusal, which was found to typically be within the range of seven feet to nine feet bgs. Drilling was conducted using a truck-mounted Auger drilling unit. Each boring location was assessed for visual impairment, olfactory indications of impairment, and total VOCs using a photoionization detector (PID). Each boring was sampled using a 4-foot by 2-inch outside diameter hollow steel boring, containing a hollow plastic boring sleeve. All non-disposable sampling equipment was decontaminated with Alconox cleaning solution

and water between drill locations to avoid potential cross contamination of samples. Decontamination procedures included scrubbing and rinsing of the steel drill bit and drilling rods. All decontaminated procedures were conducted over a five gallon bucket to allow for collection of all waste cleaning fluids, followed by compliant disposal offsite by the drilling contractor. The drilling contractor also collected and disposed of spent plastic boring sleeves offsite.

Soil screening information and data, including material description and physical evidence of contamination (odors, staining or sheen) for each split-spoon sample was recorded on soil boring logs provided in **Appendix A.** Samples were collected and placed in a plastic zip lock bag. Head space readings for samples were conducted using a Mini-Rae 3000 photo-ionization detector (PID) with an 11.7-volt lamp. Samples were also tested with the PID while in the boring sleeve.

Subsurface samples were selected from each split-spoon sample for laboratory analysis for VOCs and SVOCs based on visual impairment, olfactory indications of impairment, utilization of a PID to identify "evidence of impairment," and depth. Samples were mainly extracted from urban fill identified in the samples. Samples were collected and placed in clean bottles supplied by the laboratory. Information pertaining to the sampling depth and PID head space readings for all samples were also recorded on the soil boring logs.

A total of seven samples (including one duplicate) were collected for analysis for VOC and SVOC compounds included in 6 NYCRR Part 375-6.8. Alpha Analytical, Inc. was contracted to analyze soil samples for EPA Method 8260C (VOCs) and EPA Method 8270D (SVOCs). Alpha Analytical is a NYSDOH-certified laboratory. The duplicate sample was collected for sample EB-1. Subsurface soil boring and sampling locations are shown on **Figure 2**.

2.3 Groundwater Sampling

Three temporary groundwater monitoring wells were installed on the Site. Three groundwater monitoring wells were completed with five feet of one-inch, Schedule 40, 0.010-slot well screen connected to a Schedule 40 PVC well riser to complete the well. Well construction logs are provided in Appendix A.

Before groundwater collection, water levels were measured using an electric water level sounder, with 0.01-foot accuracy. Water quality measurements such as pH, turbidity, dissolved oxygen, temperature, and conductivity were not collected during this sampling event due to limited volume of groundwater available on the day of sampling.

Groundwater samples were collected from each well using bailing methods. Groundwater samples were carefully transferred into clean bottles supplied by the lab and analyzed for parameters in 6 NYCRR Part 375-6.8 VOCs and SVOCs. One equipment blank was also collected. The locations of the groundwater monitoring wells are shown on **Figure 3**.

2.4 Sub-Slab/Air Sampling

Sub-slab soil vapor samples were collected from two locations within the structure located on the Site (shown on Figure 4). One sample was collected from within the garage portion of the structure, and the other was collected from a former office space located towards the southwest corner of the interior of the structure.

The following procedure was used to collect the sub-slab samples:

- A hammer drill was used to puncture ½ inch hole through the concrete slab floor at the two locations shown on Figure 4.
- Polyethylene tubing was inserted one to two inches into each hole and the floor penetration around the tubing was sealed at each location using soft, pliable, VOC-free clay.
- An enclosure was constructed around the sub-slab sampling point (e.g., plastic bag, plastic bucket, etc.) and sealed to the sample point tubing in order to perform a tracer gas evaluation.
- Each sub-slab sampling point was purged of three tubing volumes at a rate not to exceed 0.2 L/m to ensure that a representative sample of soil vapor was obtained.
- At the end of sampling, at least one inch of vacuum was left in the summa canister to meet data quality objectives.
- After removing the tubing from holes in the floor, the floor was repaired with a quick drying cement mixture.

Two additional indoor air samples were collected at the sub-slab sampling locations (plus one duplicate sample). One outdoor air sample was also collected. All air samples were collected with summa canisters and an attached regulator that was set at a specific initial sampling time that ran for 24 hours of sample collection. **Figure 4** shows the locations of the sub-slab and air samples.

2.5 Asbestos and Lead-Based Paint Survey

Paradigm Environmental conducted an asbestos and lead-based paint survey of the existing structure on the property. The goal of the asbestos survey was to confirm the presence, and estimate the quantities thereof, of asbestos-containing materials (ACMs), and included physical assessments, visual assessments, and collection of bulk samples for laboratory analysis. A total of 39 samples were collected from suspect ACMs from the structure. Samples were analyzed via multiple analytical methodologies, including Polarized Light Microscopy (PLM) and Transmission Electron Microscopy (TEM). Paradigm confirmed the presence of non-friable asbestos in approximately 210 linear feet of window glaze on the interior of the structure, approximately 775 linear feet of caulk, glaze, and tar on the exterior of the structure, and approximately 1,180 square feet of exterior roofing materials.

The goal of the lead-based paint survey was to confirm the presence of lead-based paint on the surface of building materials, and included physical assessments, visual assessments, and limited X-Ray Fluorescence (XRF) surface analyses. A total of 26 XRF analyses samples were collected from surfaces in both the interior and exterior of the structure. Paradigm confirmed the presence of lead-based paint on five surfaces within the building. The asbestos and lead-based paint survey reports are included as Attachment E.

2.6 Quality Assurance, Quality Control, and Data Validation

Validation of all analytical data generated from this effort was conducted by Vali-Data of WNY, LLC. Category B data packages for all analytical results from this effort were provided by Alpha Analytical. The Data Usability Summary Report (DUSR) is attached as Appendix G.

3.0 PHASE II ESA FINDINGS

3.1 Subsurface Conditions

3.1.1 Site Stratigraphy

Urban fill material was generally observed across the Site from beneath the topsoil to approximately two feet to five feet below grade surface (bgs). The fill material consists of a mixture of different soil materials (sand, silt, clay), angular gravel, concrete, and rock material. Native silty-clay was observed beneath the fill material. Bedrock or refusal was generally encountered around six to nine feet bgs.

The soils from borehole samples were generally classified in the following categories:

Topsoil/Silty Clay- Topsoil and brown, silty clay was observed in many areas

from the surface to 6 inches below grade

Fill- Anthropogenic sources of any one, or mixture, of the

material re-worked to build a site to a defined grade. This material included crushed rock, sand, bricks, wood,

concrete, and angular gravel.

Silty Clay- Red/brown in color, with varying plasticity based on depth

A soil screening summary for all 10 boring locations is provided in Table 3-1.

Table 3-1: Soil Screening Summary

Soil Boring	Refusal Depth (ft bgs)	Max PID Reading (ppm)	Max PID Depth (ft bgs)	Notable Visual Observations	Notable Olfactory Observations	Sample Collection Depth (ft. bgs)
EB-1	9	3.1	9	Wet fill gravel, silty brown clay @ 9' bgs	None	9
EB-2	9	2.4	0-4	Angular gravel throughout silty clay	None	Not sampled
EB-3	8	351.8	4-8	Angular gravel throughout silty clay @ 7' bgs	None	7
EB-4	8	147.3	4-8	Dense brown/dark brown silty clay @ 7- 8' bgs	None	6
EB-5	7	5.3	0-4	Angular gravel throughout silty clay @ 3-4' bgs	None	3
EB-6	7	29.5	4-8	Dark Brown Silty Clay	None	Not sampled
EB-7	7	7.5	4-8	Smooth gravel throughout silty clay	None	7
EB-8	9	28.1	4-8	Saturated smooth gravel throughout silty clay	None	Not sampled
EB-9	6	4.3	0-4	Gravel/Rock/Silty clay @ 5' bgs	None	5
EB-10	8	3.5	4-8	Angular gravel throughout silty clay	None	Not sampled

The soil borings across the Site showed similarities of angular or smooth gravel mixed throughout light brown or dark brown silty clay. Light brown silt was generally observed and shallower soil depths that continued to transition into dark brown silty clay. No notable odors were observed in any of the soil borings.

Seven subsurface soil samples (including one duplicate) were collected from the 10 subsurface borings advanced on the Site. Soil borings EB-1, EB-3, EB-4, EB-5, EB-7,

and EB-9 were selected for sampling based on visual observations (darker/stained soils, presence of angular gravel, etc) and elevated PID readings. The depth of sample collection at each of the selected borings was determined based on max PID readings, and notable visual observations (darker/stained soils) made for each of the borings, potentially indicative of subsurface contamination.

3.1.2 Groundwater Conditions

Soils encountered during the boring program were observed to be moist, but not heavily saturated within the vadose zone for all borings. During groundwater monitoring well sampling, the static water level generally ranged from six to eight feet below grade. A summary of groundwater observations made at each monitoring well at the time of groundwater sample collection is included in Table 3-2.

Table 3-2: Summary of Groundwater Monitoring Wells

Groundwater Groundwater

Well ID	Groundwater Depth (ft.)	Elevation (ft.)	Groundwater Elevation (ft.)
MW-1	7.7	603	595.3
MW-2	7.1	601	593.9
MW-3	6.3	602	595.7

3.2 Analytical Results

3.2.1 Subsurface Soil Sampling Results

Seven subsurface soil samples were collected from six borings (six samples and one duplicate), and samples were analyzed for VOCs and SVOCs. Tabular and graphical summaries of subsurface soil sample analytical results are provided in Table 1 and Figures 3/3A, respectively, and laboratory analytical reports are included in Appendix B.

VOC and SVOC analytical data from the subsurface soil samples were compared against NYSDEC SCOs outlined in 6NYRR Part 375-6.8(b) (effective December 14, 2006), to provide a perspective of the severity of impacts. A summary of the NYSDEC SCOs is as follows:

<u>Unrestricted Use:</u> This land use category is intended to be representative of pre-disposal conditions and requires no restrictions on the use of the site. The unrestricted use soil cleanup objectives represent the concentration of a contaminant in soil which will require

no use restrictions on the site for the protection of public health, groundwater and ecological resources due to the presence of contaminants in the soil.

<u>Residential Use:</u> This land use category is intended for single family housing and requires the fewest restrictions on the use of the site. It allows only two restrictions: a groundwater use restriction and/or a prohibition against producing animal products for human consumption.

<u>Restricted-Residential Use:</u> This land use category is intended for apartments, condominium, co-operative or other multi-family / common property control residential development. In addition to the restrictions for residential use, this use prohibits vegetable gardens, unless planted in gardens where the soil achieves the residential use soil cleanup objectives; and a prohibition of single-family housing. Restricted-Residential use is the appropriate use category for the following:

- Day care or other child care facilities;
- Elementary or secondary schools; or
- College or boarding school residential buildings; and

This use allows for active recreational uses, which includes recreational activities with a reasonable potential for soil contact, such as:

- Designated picnic areas
- Playgrounds
- Natural grass sports playing fields, including surrounding unpaved spectator areas

<u>Commercial Use:</u> This land use category anticipates use by businesses with the primary purpose of buying, selling or trading of merchandise or services. It is the appropriate use category for:

- Health care facilities, including hospitals, clinics etc.
- College academic and administrative facilities

This use allows for passive recreational purposes, which includes recreational uses with limited potential for soil contact, such as:

- Artificial surface fields
- Outdoor tennis or basketball courts
- Other paved recreational facilities used for roller hockey, roller skating, shuffle board, etc.
- Outdoor pools
- Indoor sports or recreational facilities
- Golf courses
- Paved (raised) bike or walking paths

<u>Industrial Use:</u> This land use category is intended for the primary uses of manufacturing, production, fabrication or assembly, does not include any recreational component.

The above described use-based SCOs are intended to apply to:

- The development and implementation of remedial programs for inactive hazardous waste disposal sites, including, but not limited to, sites listed on the national priorities list (NPL) or are being addressed by the Department of Defense or the Department of Energy.
- The development and implementation of remedial programs for the Brownfield Cleanup Program,
- The development and implementation of remedial programs for the environmental restoration program (ERP).
- The soil cleanup objectives for remedial programs, specifically under subpart 375-6.

VOC and SVOC analytical data from the subsurface soil samples were also compared against *Soil Cleanup Levels for Gasoline/Fuel Oil Contaminated Soil* (for applicable parameters) summarized in NYSDEC CP-51 to provide a perspective of the severity of impacts relative to potential future remediation under the Petroleum Spill Response Program. The goal of the program is to achieve pre-spill conditions relative to the petroleum contamination that was released along with any co-mingled contamination from other sources, in compliance with soil cleanup levels comprised of a mixture of unrestricted SCOs for petroleum-related contaminants listed in 6 NYCRR Table 375-6.8(a) and soil cleanup levels in CP-51, Tables 1 and 2. Ultimately, soil cleanup levels are determined on a site-specific basis depending on the program under which the site is being remediated.

A summary of SCO and NY-CP-51 standard exceedances or subsurface soil samples is summarized as follows:

• VOCs:

- The concentration of *n-propylbenzene* (6.6 ppm) exceeded the Unrestricted Use SCO standard of 3.9 ppm in subsurface soil sample EB-3.
- o The concentrations of *ethylbenzene* (13 ppm), *n-propylbenzene* (4.6 ppm), *1,3,5-trimethylbenzene* (13 ppm), and *1,2,4-trimethylbenzene* (33 ppm) exceeded Unrestricted Use SCO standards (1.0 ppm, 3.0 ppm, 8.4 ppm, and 3.6 ppm, respectively) in subsurface soil sample EB-4.
- o The concentrations of *p/m-xylene* (26 ppm), *o-xylene* (1.2 ppm), and *isopropylbenzene* (3.5 ppm) exceeded NY-CP51 standards (0.26 ppm, 0.26 ppm, and 2.3 ppm, respectively) in subsurface soil sample EB-4.

- SVOCs:
 - No exceedances of NYSDEC SCOs were observed for SVOCs in the subsurface soil samples collected for this effort.

3.2.2 Groundwater Sampling Results

Groundwater samples were collected from three temporary monitoring wells drilled onsite, and samples were analyzed for VOCs and SVOCs. Tabular and graphical summaries of groundwater sample analytical results are provided in Table 2 and Figure 4, respectively, and laboratory analytical reports are included in Appendix C. Due to minimal groundwater recharge from the wells observed on the date of sampling, sufficient volume was only available for collection of an equipment blank regarding QA/QC considerations.

VOC and SVOC analytical data from the groundwater samples were compared against Maximum Allowable Concentration standards in the *Groundwater Effluent Limitations* section of the NYSDEC's Technical & Operational Guidance (TOGS) Series 1.1.1, effective June 1998. A summary of TOGS standard exceedances is summarized as follows:

- Concentrations of individual VOCs exceeded TOGS standards in all three groundwater samples collected, detailed as follows:
 - o **MW-1:** One exceedance *sec-butylbenzene*.
 - o **MW-2:** 12 exceedances benzene, toluene, ethylbenzene, m/p-xylene, o-xylene, n-butylbenzene, sec-butylbenzene, isopropylbenzene, naphthalene, n-propylbenzene, 1,3,5-trimethylbenzene, 1,2,4-trimethylbenzene.
 - MW-3: Seven exceedances benzene, acetone, n-butylbenzene, secbutylbenzene, isopropylbenzene, naphthalene, n-propylbenzene.
- Concentrations of individual SVOCs exceeded TOGS standards in all three groundwater samples collected, detailed as follows:
 - MW-1: Five exceedances acenaphthene, naphthalene, anthracene, fluorene, phenanthrene.
 - o **MW-2:** Seven exceedances naphthalene, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, indeno(1,2,3-cd)pyrene.

• **MW-3:** Six exceedances - benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, indeno(1,2,3-cd)pyrene.

3.2.3 Sub-Slab/Air Sampling Results

Sub-slab soil vapor samples were collected from two locations within the structure located on the Site. One sample was collected from within the garage portion of the structure, and the other was collected from a former office space located towards the southwest corner of the interior of the structure. Two additional indoor air samples were collected at the sub-slab sampling locations (plus one duplicate sample). One outdoor air sample was also collected. All air samples were collected with summa canisters and an attached regulator that was set at a specific initial sampling time that ran for 24 hours of sample collection. All sub-slab and air samples were analyzed for VOCs.

Tabular and graphical summaries of sub-slab and air sample analytical results are provided in Table 3 and Figure 5, respectively, and laboratory analytical reports are included in Appendix D.

VOC analytical data from the sub-slab and air samples were compared against guidance set forth by the NYSDOH in Matrix A (Soil Vapor/Indoor Air Decision Matrix) of the "Guidance for Evaluating Soil Vapor Intrusion in the State of New York" document, effective May 2017. The NYSDOH has assigned four VOCs in Matrix A, including, trichloroethene (TCE), cis-1,2-dichloroethene (c12-DCE), 1,1-dichloroethene (11-DCE), and carbon tetrachloride. A summary of Matrix A guidance exceedances is summarized as follows:

• Sub-Slab Samples:

O The concentration of *trichloroethene* in the SS-02 sub-slab sample exceeded the Matrix A guidance value for indoor air $(0.2 \mu g/m^3)$, but was below the Matrix A guidance value for sub-slab vapor $(6 \mu g/m^3)$.

• Air Samples:

The concentration of *carbon tetrachloride* in all four air samples (IA-01, IA-01 duplicate, IA-02, and OA-01) exceeded the Matrix A guidance value for indoor air (0.2 μg/m³).

4.0 PHASE II ESA SUMMARY

4.1 Summary of Findings

- 1. Urban fill material was generally observed across the Site from beneath the topsoil to approximately two feet to five feet below grade surface (bgs). The fill material consists of a mixture of different soil materials (sand, silt, clay), angular gravel, concrete, and rock material. Native silty-clay was observed beneath the fill material. Bedrock or refusal was generally encountered around six to nine feet bgs.
- 2. The geophysical survey confirmed the presence of three USTs in the central portion of the Site, and possibly one additional, smaller UST was noted on the northern edge of the building on the Site. Several utilities were also confirmed and marked in the field.
- 3. Screening of soil borings included assessment for visual impairment, olfactory indications of impairment, and total VOCs using a photoionization detector (PID). Max PID readings for the borings ranged from 3.1 to 351.8 ppm. No notable odors were observed in any of the soil borings. Seven subsurface soil samples (including one duplicate) were collected from the 10 subsurface borings advanced on the Site. Soil borings EB-1, EB-3, EB-4, EB-5, EB-7, and EB-9 were selected for sampling based on visual observations (darker/stained soils, presence of angular gravel, etc.) and elevated PID readings. The depth of sample collection at each of the selected borings was determined based on maximum PID readings, and notable visual observations (darker/stained soils) made for each of the borings, potentially indicative of subsurface contamination.
- 4. Elevated VOC and SVOC concentrations were observed in subsurface soil samples collected adjacent to the USTs. Elevated VOC and SVOC concentrations were also observed in groundwater samples collected from monitoring wells advanced adjacent to the tanks. Specifically, those VOC and SVOC compounds observed as elevated in subsurface soil and groundwater samples are primarily petroleum/BTEX-type compounds, which may be indicative of a release of petroleum product material from the USTs and subsequent contamination of subsurface soils and groundwater on the Site.
- 5. Groundwater was observed at depths of approximately six to seven feet bgs in three monitoring wells installed on the Site. Concentrations for numerous VOCs and SVOCs in groundwater samples collected from all three monitoring wells exceeded NYSDEC TOGS Series 1.1.1 Groundwater Standards. A summary of the number of individual VOC and SVOC compounds that were observed to exceed TOGS Groundwater Standards in samples collected from each of three groundwater monitoring wells is as follows:

• MW-1

VOCs: one individual compoundSVOCs: five individual compounds

• MW-2

VOCs: 12 individual compoundsSVOCs: seven individual compounds

• MW-3

VOCs: seven individual compoundsSVOCs: six individual compounds

- 6. Six individual volatile organic compounds (VOCs) were observed to exceed NYSDEC Unrestricted Use Soil Cleanup Objective (SCO) criteria in two of seven subsurface soil samples collected (samples EB-3 and EB-4), which were collected at a depth of six to seven foot bgs. Both EB-3 and EB-4 were located in the southwest portion of the Site adjacent to a concrete pad used previously by the auto repair shop. The use of the pad is unconfirmed, but appears to have functioned as the fuel island for users/patrons of the Site.
- 7. Of the two sub-slab samples collected within the existing structure on the Site, only one VOC compound (trichloroethene) was detected in exceedance of *NYSDOH* Matrix A guidance value for indoor air (0.2 µg/m³), but below the Matrix A guidance value for sub-slab vapor (6 µg/m³) in one sub-slab sample (SS-02). Carbon tetrachloride was detected in exceedance of *NYSDOH Matrix A Indoor Air Concentration* guidance values in all four air samples collected (three indoor and one outdoor).
- 8. The asbestos survey confirmed the presence of non-friable asbestos in approximately 210 linear feet of window glaze on the interior of the structure, approximately 775 linear feet of caulk, glaze, and tar on the exterior of the structure, and approximately 1,180 square feet of exterior roofing materials. The lead-based paint survey confirmed the presence of lead-based paint on five surfaces within the building.
- 9. The potential source of the elevated VOC and SVOC concentrations observed in subsurface soil, groundwater, sub-slab air, and air samples were not fully confirmed via this Phase II investigation. Considering that historical use of both the Site, and parcels adjacent to the Site, were similar and included car sales, gasoline stations, and automotive repair, it is possible that the elevated VOC and SVOC concentrations may be attributed to source(s) onsite, offsite, or both, RECs identified in the Phase I ESA, and in this Phase II ESA effort. Additional screening and sampling can be conducted if suggested/requested by the USEPA or NYSDEC to understand the full nature and extent of contamination, as well as the source of that contamination. The scope of additional screening and sampling of subsurface soils and groundwater can be expanded to include both PCBs and

metals characterization. These contaminants may potentially be present in environmental media based on the types of activities that took place on the Site historically.

4.2 Discussion and Conclusions

Niagara County intends to acquire this site to redevelop the property for unknown future use. Subsurface soil, groundwater, and air/sub-slab impacts on the Site were identified during this assessment. VOC and SVOC concentrations above the NYSDEC Unrestricted Use SCO and CP-51 criteria were confirmed in the subsurface soils, specifically in the southwest portion of the Site.

Considering that historical use of both the Site, and parcels adjacent to the Site, were similar and included car sales, gasoline stations, and automotive repair, it is possible that the elevated VOC and SVOC concentrations observed in subsurface soil and groundwater samples may be attributed to a combination of both onsite and offsite RECs identified in the Phase I ESA, and in this Phase II ESA effort.

Elevated levels of VOCs in sub-slab vapor and air were observed at the Site but the potential source was not confirmed, considering the same VOCs were not detected in groundwater and subsurface soils sampled from the Site as part of this effort.

Although no free petroleum product was observed during sampling conducted for this effort, exposure to contaminated subsurface soil materials and groundwater may be possible if invasive site improvement (i.e., earthwork, utility construction) is conducted in the future based on levels of VOCs and SVOCs confirmed in samples collected.

The potential source of the elevated VOC and SVOC concentrations observed in subsurface soil, groundwater, sub-slab air, and air samples were not fully confirmed via this Phase II investigation. Additional screening and sampling can be conducted if suggested/requested by the USEPA or NYSDEC to understand the full nature and extent of contamination, as well as the source of that contamination. The scope of additional screening and sampling of subsurface soils and groundwater can be expanded to include both PCBs and metals characterization. These contaminants may potentially be present in environmental media based on the types of activities that took place on the Site historically.

Depending on the intended final use, cleanup and redevelopment of the Site may be eligible for the NYS Brownfield Cleanup Program (BCP). The BCP provides a structured approach for the remediation of contamination sites. The program also provides tax benefits and a release of liability for the property owner. The results of this report should be reviewed by the NYSDEC to determine potential participation in this program.

5.0 DISCLAIMER

C&S's conclusions are based on conditions that existed on the Site in April 2019 through May 2019. Past and present conditions that could not be observed were established on the basis of documents. C&S cannot attest to the completeness of accuracy of these materials.

This report was prepared by C&S expressly and exclusively for use by Niagara County Department of Economic Development, its successors and/or assigns. Except where specifically stated to the contrary, the information contained herein was provided to C&S by others and has not been verified independently or otherwise examined to determine its accuracy, completeness, or feasibility. In addition, C&S may have had to rely upon the assumptions, especially as to future conditions and events. Accordingly, neither C&S nor any person acting on its behalf (a) makes any warranty or representation, whether expressed or implied, concerning the usefulness of the information contained in this report, or (b) assumes liabilities with respect to the use of or for damages resulting from the use of any information contained in this Environmental Site Assessment (ESA) report. Further, C&S cannot promise that any assumed conditions will come to pass.

No one is authorized to rely on this report for any purpose, except to the extent that such reliance is specifically authorized in writing by C&S. Any person who intends to take action, which is in any way related to or affected by the information contained herein, should independently verify all such information. The report speaks only as of the date issued. C&S has no responsibility for updating the information herein, and therefore, it should not be assumed that any information contained herein in this ESA continues to be accurate subsequent to 180 days from the date of the site inspection.

It would be extremely expensive, and perhaps not possible, to conduct an investigation that would ensure the detection of environmental impacts at the subject site, which now are, or in the future might be, considered hazardous. This investigation does not guarantee that C&S discovered all the environmental impacts at the Subject Properties. Similarly, a property which, in fact, is unaffected by environmental impacts at the time of the assessment may later, due to natural phenomena or other intervention, become contaminated.

Except where stated to be the contrary, this ESA has been prepared solely on the basis of readily available visual observation. Except where stated to be the contrary, no demolition or removal by C&S has been accomplished to reveal hidden conditions. No testing such as the testing of materials, equipment, or systems has been performed to verify current conditions or to predict future conditions.

Future regulatory modifications, agency interpretation, or policy changes may affect the compliance status of the property.

A title search and wetland surveys were not requested as part of this project. These topics require specialized expertise. A specialty survey can be performed upon request.

6.0 NEXT STEPS

Based on the findings and conclusions of the Phase II ESA effort summarized in this report, C&S recommends the next steps be taken for the Site:

- Initiate dialogue with the NYSDEC Region 9 office regarding possible Brownfield Cleanup Program application submittal for remedial activities required onsite. If the project is deemed to be viable for the BCP, proceed through the various administrative steps of the program, including:
 - o BCP pre-application dialogue with the NYSDEC Region 9 office
 - o BCP application preparation
 - o Remedial Investigation Work Plan preparation
 - o Remediation Action Work Plan preparation
 - o Remediation/Oversight
 - o Final Engineering Report

Preliminary Estimated Cost: \$50,000 - \$60,000

- Implementation of remedial measures onsite, including:
 - Removal of the suspected USTs (and potential tank contents, if confirmed) identified in the geophysical survey conducted as part of this project. Three USTs were detected in the central part of the Site, and another suspected UST was detected on the northern side of the structure located onsite. These suspected tanks are likely linked to information found in municipal records during the Phase I ESA conducted previously pertaining the various tanks installed onsite historically.

Preliminary Estimated Cost: \$40,000 - \$45,000

- Additional screening and sampling during remedial activities to fully delineate contaminated materials onsite (most notably adjacent to the existing USTs), and to understand the full nature and extent of contamination, as well as the source of that contamination. This scope will include additional screening and sampling of subsurface soils and groundwater for both PCBs and metals, as recommended by the USEPA. *Preliminary Estimated Cost: \$50,000 \$60,000*
- Removal of contaminated subsurface soils and groundwater confirmed via the additional screening and sampling during remedial activities.
 Preliminary Estimated Cost: \$25,000 \$30,000

ENVIRONMENTAL PROFESSIONAL STATEMENT AND QUALIFICATIONS

We declare that, to the best of our professional knowledge and belief, we meet the definition of *Environmental Professional* as defined in §312.10 of 40 CFR 312.

We have the specific qualifications based on education, training, and experience (as summarized on the resumes which follow this page) to assess a property of the nature, history and setting of the Site. To the best of our knowledge and belief, C&S Engineers Inc. has developed and performed all appropriate inquiries in general conformance with the standards and practices set forth in 40 CFR Part 31.

Daniel E. Riker, P.G.

DEAL

Department Manager - Environmental Services

FIGURES

SUBJECT PROPERTY

NOTES

1. COORDINATE SYSTEM: NAD 1983 2011 STATE PLAN NEW YORK WEST FIPS 3103 PROJECTION: TRANSVERSE MERCATOR DATUM: NORTH AMERICAN 1983 UNITS: US FOOT

C&S Engineers, Inc.

141 Elm Street
Buffalo, New York 14203
Phone: 716-847-1630
Fax: 716-847-1454
www.cscos.com

YORK 641 WEST AVENUE PHASE II ENVIRONMENTAL SITE ASSESSMENT NEW CITY OF LOCKPORT,

10/11/2018 A. DEMARCHI A. DEMARCHI J. BOGDAN

Site Location

FIGURE 1

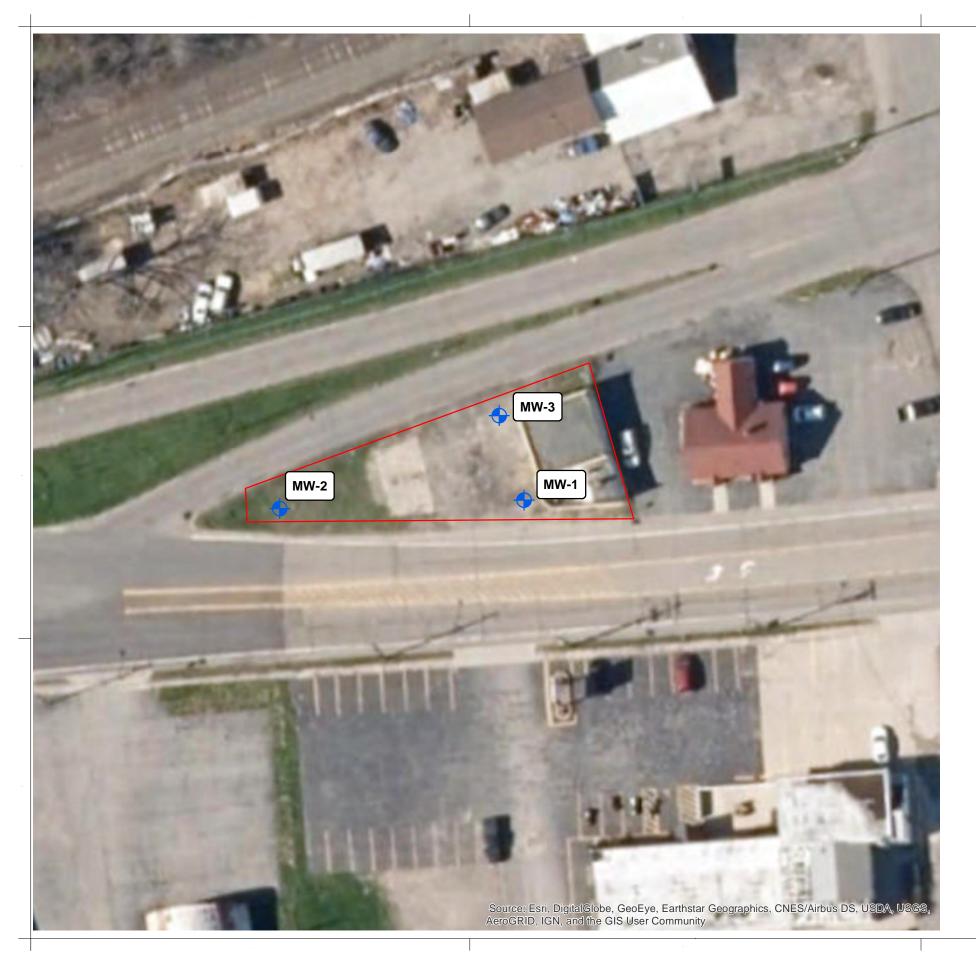
SUBJECT PROPERTY

SOIL BORING LOCATIONS

NOTES

1. COORDINATE SYSTEM: NAD 1983 2011 STATE PLAN NEW YORK WEST FIPS 3103 PROJECTION: TRANSVERSE MERCATOR DATUM: NORTH AMERICAN 1983 UNITS: US FOOT

C&S Engineers, Inc.


141 Elm Street
Buffalo, New York 14203
Phone: 716-847-1630
Fax: 716-847-1454
www.cscos.com

NEW YORK 641 WEST AVENUE
PHASE II ENVIRONMENTAL
SITE ASSESSMENT
CITY OF LOCKPORT, NEW YOR

> 10/11/2018 A. DEMARCHI A. DEMARCHI J. BOGDAN

Soil Sample Locations

FIGURE 2

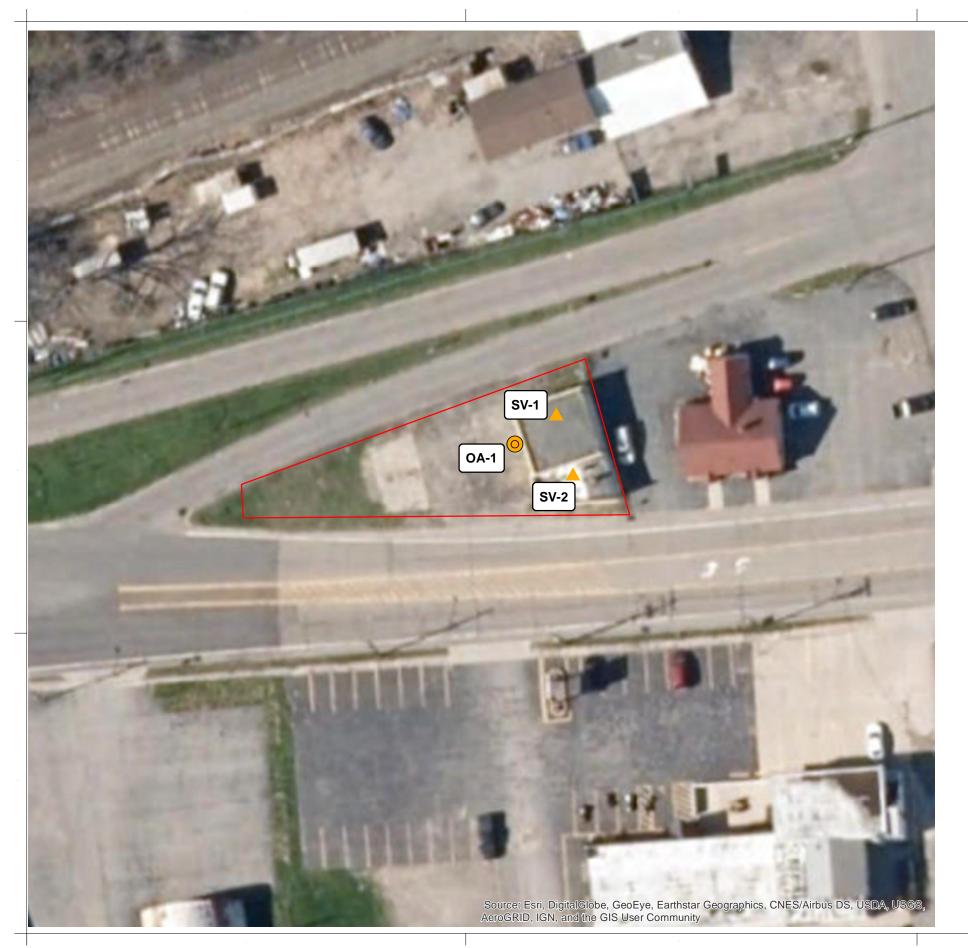
SUBJECT PROPERTY

PROPOSED MONITORING WELL LOCATION

NOTES

1. COORDINATE SYSTEM: NAD 1983 2011 STATE PLAN NEW YORK WEST FIPS 3103 PROJECTION: TRANSVERSE MERCATOR DATUM: NORTH AMERICAN 1983 UNITS: US FOOT

C&S Engineers, Inc.


141 Elm Street
Buffalo, New York 14203
Phone: 716-847-1630
Fax: 716-847-1454
www.cscos.com

YORK 641 WEST AVENUE PHASE II ENVIRONMENTAL SITE ASSESSMENT NEW LOCKPORT, OF CITY

> 10/11/2018 A. DEMARCHI A. DEMARCHI J. BOGDAN

MONITORING WELL LOCATIONS

FIGURE 3

SUBJECT PROPERTY

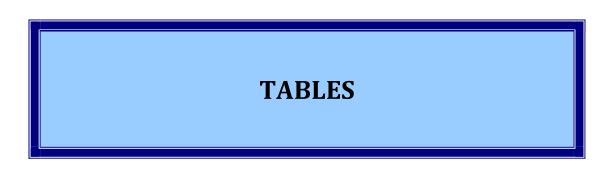
OUTDOOR AIR SAMPLE

SUBSLAB SOIL VAPOR AND INDOOR AIR SAMPLE LOCATION

C&S Engineers, Inc.

141 Elm Street
Buffalo, New York 14203
Phone: 716-847-1630
Fax: 716-847-1454
www.cscos.com

641 WEST AVENUE
PHASE II ENVIRONMENTAL
SITE ASSESSMENT
CITY OF LOCKPORT, NEW YORK


10/11/2018 A. DEMARCHI A. DEMARCHI J. BOGDAN

AIR SAMPLE LOCATIONS

FIGURE 4

NOTES

1. COORDINATE SYSTEM: NAD 1983 2011 STATE PLAN NEW YORK WEST FIPS 3103 PROJECTION: TRANSVERSE MERCATOR DATUM: NORTH AMERICAN 1983 UNITS: US FOOT

		SS-01		SS-02	IA-01	DUP		IA-02	OA-01					
	4/19/2019		4/19/2019	4/19/2019	4/19/2019		4/19/2019	4/19/2019						
		SOIL_VAPOR		SOIL_VAPOR			AIR		AIR	AIR				
	T 1	UNITS	ug/m3		ug/m3		ug/m3		ug/m3		ug/m3		ug/m3	
	Indoor Air Concentrations	Sub-Slab Vapor Concentrations												
VOCs	Concentrations	Concentrations												
Dichlorodifluoromethane			1.5	-	1.55	-	1.29	-	1.33	T -	1.62	-	1.84	T - 1
Chloromethane			0.432	-	ND	-	1.43	-	1.56	-	1.45	-	1.19	-
Freon-114			ND		ND	-	ND		ND	-	ND		ND	<u> </u>
Vinyl chloride*			ND		ND	<u> </u>	ND	<u> </u>	ND	<u> </u>	ND	<u> </u>	ND	<u> </u>
1,3-Butadiene			ND	-	ND	 -	ND	<u> </u>	ND	<u> </u>	ND	<u> </u>	ND	 -
Bromomethane			ND	-	ND	 -	ND	-	ND	+-	ND	+-	ND	+-
Chloroethane Ethanol	_		ND 190	+-	ND 26.8	+-	ND 317	+-	ND 324	+-	ND 85.2	+-	ND 10.8	+-
Vinyl bromide			ND	$+\frac{1}{2}$	ND	+-	ND	+-	ND	÷	ND	+-	ND	+÷
Acetone			249	\pm	128	+-	ND	+-	ND	╁	ND	+-	10	+-
Trichlorofluoromethane			180	 -	1.35	+-	1.67	+-	1.63	+-	1.83	+-	1.15	+-
Isopropanol			48.2	-	3.88	† -	ND	-	ND	†-	ND	-	ND	+-
1,1-Dichloroethene*	0.2	6	ND	-	ND	T -	ND	-	ND	†-	ND	-	ND	1-
Tertiary butyl Alcohol			3.15	-	9.22	Œ	ND	-	ND	ĮΞ	ND		ND	Ţ-
Methylene chloride			ND	-	ND	<u> </u>	ND	_	ND	Ι-	ND		ND	<u> </u>
3-Chloropropene			ND	4-	ND	<u> </u>	ND	-	ND	<u> </u>	ND	-	ND	<u> </u>
Carbon disulfide			5.45	-	2.78	+-	ND	<u> </u>	ND	 -	1.27	<u> </u>	ND	 -
Freon-113 trans-1.2-Dichloroethene			64.6	-	ND	-	ND	-	ND	┿	ND	-	ND	+-
			ND	+-	ND	+-	ND	-	ND	╀	ND	-	ND	┿
1,1-Dichloroethane Methyl tert butyl ether			ND ND	-	ND ND	+-	ND ND	 -	ND ND	┿	ND ND	+-	ND ND	┿
2-Butanone			80.5	$+$ $\overline{-}$	135	+-	4.63	+-	4.87	╀	4.87	+-	ND	+-
cis-1,2-Dichloroethene*	0.2	6	ND	╅	ND	+-	ND	+-	ND	╁	ND	┋	ND	+-
Ethyl Acetate	0.2		ND	+-	ND	+-	ND	+-	ND	+-	ND	+-	ND	+-
Chloroform			ND	-	1.37	+-	ND	-	ND	†-	ND	 -	ND	+-
Tetrahydrofuran			12.4	-	ND	† -	ND	T -	1.5	†-	ND	T -	ND	† -
1,2-Dichloroethane			ND	-	ND	T -	ND	-	ND	-	ND	T -	ND	1-
n-Hexane			36.7	-	26.4	-	162	-	171	-	51.5		ND	Τ-
1,1,1-Trichloroethane*			110	-	ND	-	ND	-	ND	-	ND		ND	-
Benzene			6.87		6.26	<u> </u>	27.2	-	28.3	<u> -</u>	10.3		ND	<u> </u>
Carbon tetrachloride	0.2	6	ND	-	ND	<u> </u>	0.396	-	0.396	<u> </u>	0.415	-	0.403	<u> </u>
Cyclohexane			13.5	-	9.95	+-	12.9	+-	14.4	+-	4.68	+-	ND	+-
1,2-Dichloropropane Bromodichloromethane			ND ND	-	ND ND	+-	ND ND	+-	ND ND	+-	ND ND	 -	ND ND	+-
1,4-Dioxane			ND ND	 -	ND ND	╁	ND ND	+-	ND ND	╁	ND ND	+-	ND ND	+-
Trichloroethene*	0.2	6	ND	+	2	_	ND	+-	ND	+-	ND	+-	ND	+-
2,2,4-Trimethylpentane	0.2		36	+-	ND	-	128	+-	132	+-	44.4	+-	ND	+-
Heptane			25	-	27.4	T -	27	-	28.1	1-	10.1	-	ND	 -
cis-1,3-Dichloropropene			ND	-	ND	T -	ND	-	ND	†-	ND	-	ND	1-
4-Methyl-2-pentanone			9.79	-	ND	-	2.23	-	2.27	-	ND	-	ND	-
trans-1,3-Dichloropropene			ND	-	ND	-	ND	-	ND	-	ND		ND	
1,1,2-Trichloroethane			ND		ND	<u> </u>	ND	<u> </u>	ND	<u> </u>	ND	<u> </u>	ND	 -
Toluene			145	- -	47.9	 -	136	 -	133	┿	67.5	 -	0.995	 -
2-Hexanone			11.8	-	20	+-	ND	+-	ND	╀	ND	+-	ND	+-
Dibromochloromethane 1,2-Dibromoethane			ND ND	-	1.7 ND	+-	ND ND	+-	ND ND	┿	ND ND	<u> </u>	ND ND	+-
Tetrachloroethene*			9.15	+	10.8	+-	0.59	+-	0.597	┿	0.441	+-	0.136	┿
Chlorobenzene			9.13 ND	+-	ND	+-	ND	+-	ND	+	ND	+-	ND	+÷
Ethylbenzene			5.99	+-	2.04	+-	20.4	+-	19.9	+-	8.77	+-	ND	+-
p/m-Xylene			20	-	8.34	+-	78.6	-	76.4	†-	33.5	 -	ND	+-
Bromoform	1	 	ND	-	ND	†-	ND	 -	ND	†-	ND	 -	ND	† -
Styrene			ND	-	ND	1-	ND	-	ND	1-	ND	-	ND]-
1,1,2,2-Tetrachloroethane			ND		ND	I-	ND	-	ND	I-	ND		ND]-
o-Xylene			8.3	<u> </u>	2.55	Œ	32.4		31.4	ΙΞ	13.2		ND	ŢĒ
4-Ethyltoluene			ND	 -	ND	<u> </u>	6	-	5.8	1-	2.26	-	ND	<u> </u>
1,3,5-Trimethylbenzene		1	0.983	4-	ND	<u> </u>	6.49	<u> </u>	6.19	 -	2.35	<u> </u>	ND	<u> </u>
1,2,4-Trimethylbenzene		1	2.14	-	1.71	+-	26.4	-	25.4	+-	9.44	-	ND	 -
Benzyl chloride		+	ND	+-	ND	+-	ND	 -	ND	+-	ND	+-	ND	+-
1,3-Dichlorobenzene		+	ND	+-	ND ND	+-	ND ND	+-	ND ND	+-	ND ND	 -	ND ND	+-
1,4-Dichlorobenzene	+	+	ND ND	+-	ND ND	+-	ND ND	-	ND ND	+-	ND ND	-	ND ND	+-
1,2,4-Trichlorobenzene	+	+	ND ND	\pm	ND ND	+-	ND ND	+-	ND ND	+-	ND ND	+-	ND	+-
Hexachlorobutadiene	+	+	ND	+	ND	+-	ND	+-	ND	+-	ND	+-	ND	+-
	_1			-	112								1.2	

Notes:

Only compounds detected in at least one sample are included in the table $% \left(1\right) =\left(1\right) \left(1\right) \left$

All concentrations in ug/m3

Analytical data compared to DOH Indoor Air and Sub-Slab concentrations

ND- The compound was not detect

NY-IAC-A: New York DOH Matrix A Indoor Air Concentrations Criteria per Guidance for Evaluating Soil Vapor Intrusion, October 2006, and updated May 2017.
NY-SSC-A: New York DOH Matrix A Sub-slab Vapor Concentrations Criteria per Guidance for Evaluating Soil Vapor Intrusion, October 2006, and updated May 2017.

^{*}SIM analysis for these compounds for air samples

GROUNDWATER SAMPLE RESULTS 641 West Avenue

	MW-1		MW-2		MW-3		EQUIPMENT BLANI			
	SAMPLING DATE	4/30/2019		4/30/2019		4/30/2019		4/30/2019		
	SAMPLE TYPE	GW		GW		GW		GW		
	UNITS	ug/l		ug/l		ug/l		ug/l		
	NYS TOGS Groundwater Standand & Guidance									
VOC	Standand & Guidance									
Benzene	1 1	ND	11	1100		1.7	J	ND	Т	
Toluene	5	ND		220	1	ND	Ť	ND		
Ethylbenzene	5	ND	1	680		ND		ND		
p/m-Xylene	5	ND	1	2700		ND		ND		
o-Xylene	5	ND	1	140		ND		ND		
Acetone	50	ND		ND		64		3.3		
n-Butylbenzene	5	ND		13		43		ND		
sec-Butylbenzene	5	12	J	8.9		37		ND		
Isopropylbenzene	5	ND		89		31		ND		
Naphthalene	10	ND		120		15	J	ND		
n-Propylbenzene	5	ND		180		45		ND		
1,3,5-Trimethylbenzene	5	ND		240		ND		ND		
1,2,4-Trimethylbenzene	5	ND		910		ND		ND		
Cyclohexane		ND		480		5.6	J	ND		
Methyl cyclohexane		ND	\top	240		16	J	ND		
SVOC					•		<u> </u>		_	
Bis(2-ethylhexyl)phthalate	5	ND	П	ND	Π	ND	Т	3.1		
Diethyl phthalate	50	ND	\top	ND		ND		0.66	T	
Benzaldehyde		ND	\top	ND		ND		2.1	T	
Acenaphthene	20	110	\top	1.5		ND		ND		
Fluoranthene	50	4.2	J	3.1		0.54	T	ND		
Naphthalene	10	21		130		4.1		ND		
Benzo(a)anthracene	0.002	ND		1.2		0.44	J	ND		
Benzo(a)pyrene	0	ND		1.1		0.32	J	ND		
Benzo(b)fluoranthene	0.002	ND		1		0.41	J	ND		
Benzo(k)fluoranthene	0.002	ND		0.62	J	0.15	J	ND		
Chrysene	0.002	ND		1.6		0.82	J	ND		
Acenaphthylene		61		1.8		ND		ND		
Anthracene	50	52		1.3		0.21	J	ND		
Benzo(ghi)perylene		ND		0.96	J	0.17	J	ND		
Fluorene	50	180	一	3.7		6.1		0.02	J	
Phenanthrene	50	610		12		3		0.05	J	
Indeno(1,2,3-cd)pyrene	0.002	ND		0.44	J	0.18	J	ND		
Pyrene	50	17	$\dashv \dashv$	5.5		0.79	J	ND		
2-Methylnaphthalene		35	\sqcap	140	1	90		ND		

Notes:

Only compounds detected in at least one sample are included in the table

All concentrations in ug/kg

Analytical data compared to NYS TOGS criteria

ND- The compound was not detect

J - Qualifier of estimated value

Table 1

COMPANIES

Subsurface Soil Sample Results 641 West Avenue

LOCATION						EB-1	DUP (EB-1)		EB-3 4/29/2019		EB-4		EB-5		EB-7		EB-9				
SAMPLING DATE							4/29/2019		4/29/2019				4/29/2019	4/29/2019		4/29/2019	_	4/29/2019			
	SAMPLE TYPE						SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	-	SOIL		
					SAMPL	E DEPTH (ft.) UNITS	9 mg/kg		9 mg/kg	\dashv	7 mg/kg		6 mg/kg		3 mg/kg		7 mg/kg	\dashv	5 mg/kg		
		Unrestricted	Residential	Restricted	Commercial	Industrial	mg/kg		ing/kg		mg/kg		mg/kg		mg/kg		mg/kg	_	mg/kg		
	NY-CP-51	**	Use	Residential Use	Use	Use															
General Chemistry																					
Solids, Total							85.8		79.4		88.2		91.3		79.9		88.5		90.8		
VOC																					
Toluene	0.7	0.7	100	100	500	1000	ND	-	ND	-	ND	-	0.31	J	ND	-	ND	-	ND	-	
Ethylbenzene	1	1	30	41	390	780	ND	-	ND	-	ND	-	13	-	ND	-	ND	-	ND	-	
p/m-Xylene	0.26						ND	L-	ND	I - T	ND	I-1	26	-	ND	Ι-	ND		ND		
o-Xylene	0.26						ND	Ŀ	ND	<u> </u>	ND		1.2	-	ND	Ι-	ND	-	ND	-	
Acetone		0.05	100	100	500	1000	ND	-	ND	T - T	ND	-	ND	-	0.0094	J	ND	- 1	ND		
sec-Butylbenzene	11	11	100	100	500	1000	0.19	-	0.15	Ι-Ι	1.1	-	0.77	T -	ND	Τ-	0.29	- 1	ND	-	
tert-Butylbenzene	5.9	5.9	100	100	500	1000	0.013	J	ND	Ι-Ι	0.058	J	ND	T -	ND	T -	0.019	J	ND		
Isopropylbenzene	2.3						0.036	J	0.023	J	2	-	3.5	-	ND	-	0.018	J	ND		
p-Isopropyltoluene	10						ND	-	ND	T - T	0.045	J	1.4	-	ND	-	ND	- 1	ND		
Naphthalene	12	12	100	100	500	1000	ND	-	ND	- 1	ND	-	3.3	-	ND	-	ND	- 1	ND		
n-Propylbenzene	3.9	3.9	100	100	500	1000	0.073	-	0.047	J	6.6	-	4.6	-	ND	-	ND	- 1	ND		
1,3,5-Trimethylbenzene	8.4	8.4	47	52	190	380	ND	-	ND	- 1	ND	-	13	-	ND	-	ND	- 1	ND		
1,2,4-Trimethylbenzene	3.6	3.6	47	52	190	380	ND	-	ND	- 1	ND	-	33	-	ND	-	ND	- 1	ND		
Cyclohexane							ND	-	ND	-	1.1	J	36	-	ND	-	ND	- 1	ND		
Methyl cyclohexane							ND	-	ND	-	1.2	-	120	-	ND	-	0.096	J	ND		
SVOC																					
Acenaphthene	20	20	100	100	500	1000	0.23	-	0.45	-	ND	-	ND	-	ND	-	ND	-	ND		
Fluoranthene	100	100	100	100	500	1000	ND	-	0.05	J	ND	1-1	ND	T -	ND	1-	ND	-	0.023	J	
Naphthalene	12	12	100	100	500	1000	0.11	J	0.2	J	0.21	1-1	0.34	-	ND	1-	ND	-	ND	T-	
Anthracene	100	100	100	100	500	1000	0.12	-	0.22	1 - 1	ND	1-1	ND	-	ND	1-	ND	-	ND	T-	
Fluorene	30	30	100	100	500	1000	0.62	-	1	-	0.089	J	ND	T -	ND	1-	ND	-	ND	7-1	
Phenanthrene	100	100	100	100	500	1000	1.4	-	2.6	1 - 1	0.071	J	ND	-	ND	T-	ND	- 1	ND	7-1	
Pyrene	100	100	100	100	500	1000	0.062	J	0.12	-	0.023	J	ND	-	ND	-	0.026	J	0.018	J	
Dibenzofuran		7	14	59	350	1000	0.31	۱.	0.64	-	0.048	J	ND	1 -	ND	1-	ND		ND	7-1	
N-4	-	 						_						_			•			-	

Notes:

Only compounds detected in at least one sample are included in the table

All concentrations in mg/kg

Analytical data compared to Part 375 Standards and DER-10

ND- The compound was not detect

J - Qualifier of estimated value

Unrestricted Use- This land use category is intended to be representative of pre-disposal conditions and requires no restrictions on the use of the site.

Residential Use - This land use category is intended for single family housing and requires the fewest restrictions on the use of the site.

Restricted residential Use - This land use category is intended for apartments, condominium, co-operative or other multi-family / common property control residential development.

Commercial Use - This land use category anticipates use by businesses with the primary purpose of buying, selling or trading of merchandise or services.

 $Industrial\ Use-This\ land\ use\ category\ anticipates\ that\ the\ use\ of\ the\ property\ is\ for\ processes\ and\ ancillary\ purposes.$

APPENDIX A

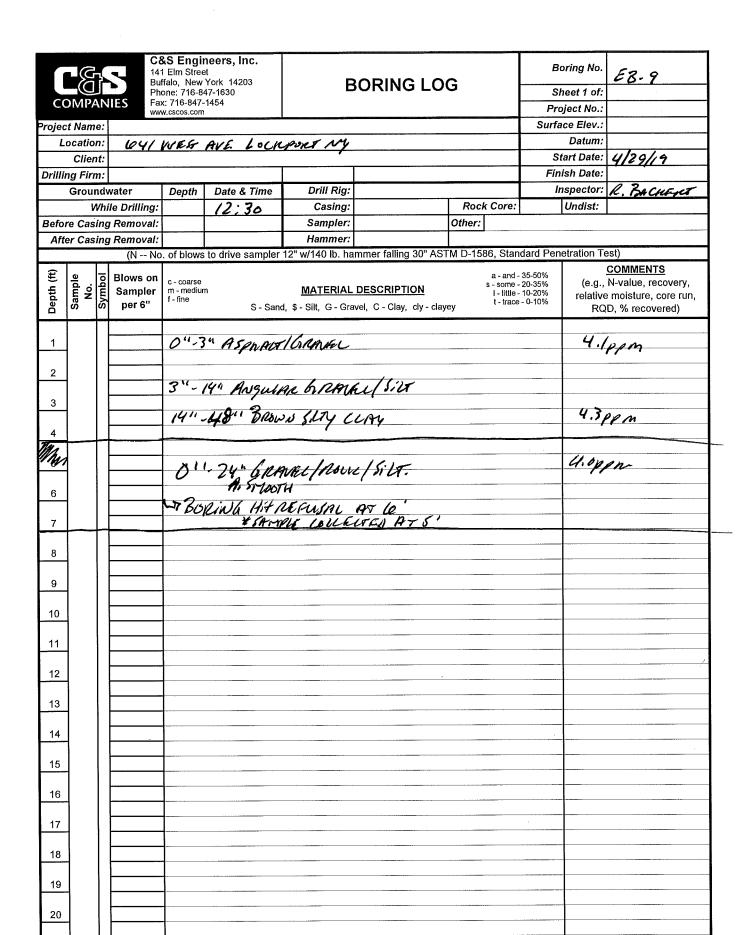
Soil Boring Logs & Well Construction Logs

	DMP/		14 Bu Ph IES Fa	1 Elm Stree	York 14203 47-1630 -1454	В	ORING LO	G	Sh Pro	oring No. neet 1 of: nject No.: ce Elev.:	E8-1
	ocatio		1041 6	/EST	AVE Locu	LOOK M				Datum:	
	Clie	ıt:				1010			St	art Date:	4/29/19
Drilli	ng Firi		NATU	nesv					Fini	ish Date:	1 7
	Grou			Depth	Ďate & Time	Drill Rig:				spector:	R. KHIKERT
L_			le Drilling:		9:00	Casing:		Rock Core:		Undist:	
		sing Removal: Sampler: Other: sing Removal: Hammer:									
An	er Cas	my		of blows	to drive sampler		nmer falling 30" AST	M D-1586, Stand	dard Pene	etration Te	est)
Depth (ft)	Sample No.	Symbol	Blows on Sampler per 6"	c - coarse m - mediur f - fine	n	MATERIAL	DESCRIPTION vel, C - Clay, cly - claye	a - and - s - some - l - little -	35-50% 20-35% 10-20%	(e.g., relative	COMMENTS N-value, recovery, moisture, core run, D, % recovered)
		П		âu	~14 4					1 4-	
2				511-1	1 ASPHAL	TE/ROCK				1.5	ppm
3											
Ť		lt		1011-	484 SOFT	19hT BRO	WN SILY CO	Au		1.60	ppm
4		Н				<u>/ </u>	/		**/		
5				010	15" ligh	PRaw.	SOFT SILTY C	lay			
6				1511	· 3ce ·· Co	KRETE In	olic				
]			10							
7				-71	457 REFU	Jac An 7	sein h / rea n		. /		
8		Ц				END PL	seene a para x	in iscer	n		
9											
10											
- <u> </u>	1										
11											
40	-	$ \ $									
12	1	╽┟									
13											
14											
15											
	1										
16											
17											
<u> </u>											
18											
19											
is	1										
20											
0.4											
21	1										
22											
		$ \cdot $									
23	1	П									

CC	OMP/	AN	141 Bull Pho Fax	Elm Stree	York 14203 47-1630 1454	E	ORING LO	G	Boring N Sheet 1 Project N	EB-/A
Projec	t Nam	e:							Surface Ele	v.;
L	ocatio		1441	WEST	AVE LOUGH	our my			Datu	
	Clie					· · ·			Start Da Finish Da	<u> </u>
Drillii	ng Firi		NAU		5H1	Deill Dies				or: R. Brantar
	Grou			Depth	Date & Time	Drill Rig: Casing:		Rock Core:	Undis	
Pofor			le Drilling: Removal:		9:70	Sampler:		Other:	Johan	
			Removal:			Hammer:		0 0.1077		
				. of blows	to drive sampler	12" w/140 lb. ha	mmer falling 30" AST	M D-1586, Stan	dard Penetratio	Test)
Depth (ft)	Sample No.	Symbol	(N No Blows on Sampler per 6"	c - coarse m - mediur f - fine	n	MATERIAL	DESCRIPTION Ivel, C - Clay, cly - clay	a - and - s - some - I - little -	35-50% 20-35% (e 10-20% rela	COMMENTS g., N-value, recovery, tive moisture, core run, RQD, % recovered)
1				011-	511 AsphA	T		,		, ,
2				511,	35" LIENT BK	lown Sory	stry CLAY			Uppa
3				2	1.691			and house	aner.	7
_4				56	-48 4910	BROV SOFT	S. LTY CLAY /	Throng	Lout 2	.3 ppm
5				011.	5" SLUH				2.	гррт <u> </u>
6										
7				511-	48 Light	BROWN MOI	Waughout	w/ Sonc	23	hom
8		Ш		H,	vyulpan Cr	nanc 1	roughout			
m		Ħ		0// 2						
194				0.0	y" Whit LAR	bk a navel	Throughout AT 9'	SiltyBew	v CHY 3.	ppm
10				So bo	RING HIT,	REFUSAL	AT 9.			
11										
12		ig								
13										
14										
15										
16										
17										
18										
19										
20										
21										
	1									
22	4			-						
23										

									and the second of the second		
	Q		141	Elm Stree	neers, Inc. et York 14203	E	ORING LO	G		oring No.	£8-2
	<u>Q</u>	Ļ	Pho	one: 716-8	47-1630		OKING LO	G	Sh	eet 1 of:	
CC)MP/	N		c: 716-847- v.cscos.com					Pro	ject No.:	
Projec	t Nam	e:			-				Surfa	ce Elev.:	
L	catio	n:	1041 1	NKST	AUR LOUN	BONT NY				Datum:	
	Clier	ıt:							St	art Date:	4/29/19
Drilli	ıg Firi	n:							Fini	ish Date:	
	Grou	ndv	vater	Depth	Date & Time	Drill Rig:				spector:	RRACIONET
	V	Vhi	le Drilling:		10:00	Casing:		Rock Core:		Undist:	
<u> </u>			Removal:			Sampler:		Other:			
Afte	er Cas	ing	Removal:	. 6 1-1	to delice complete	Hammer:	mmer falling 30" AST	M D 1586 Stan	dard Don	etration To	act)
		П		. of blows	to drive sampler	12 W/140 ID. Ha	innier failing 50 AST	W D-1360, 3tan	ualu i ell		COMMENTS
Œ	e .	힑	Blows on	c - coarse				a - and - s - some -			N-value, recovery,
Depth (ft)	Sample No.	E	Sampler	m - mediur f - fine			DESCRIPTION	I - little -	10-20% - 0-10%	relative	moisture, core run,
ď	S	S	per 6"		S - Sand	d, \$-Silt, G-Gra	ivel, C - Clay, cly - clay	ey		RQ	D, % recovered)
1				811.	3" ASPHALT	-				1.7	ppm
2						_	I with Roll	Moreype	nt		
3						,					
4				20".	.484 Ligya B	now stry	icing wifer	rUMPON A	ne	2.41	bbu
										4.0	
5					•		rist sity bra	um Clry		1.24	ppm
6				2411	304 ROCK/A	angurano,	Spance		:		
7					11111 11 11	. 1 0		4		9 =	
8				3011	- 44. 170157	light br	an Stray C	lay.		7.0	ppm
9				011-	12" Maish W	IRT Silry L	ight Brown le	CAY WITZ		0	GAAN
10				ر جدا	BORING HI	THRUCK TO REFUSE	ight blown (
11					* <u>*</u>	SO SAINFLE	COLLECTED				
12											
13											
14							-				
15											
16											
17											
18											
19											
20											
										 	
21	-			-						1	
22				-					···	1	
1 44	1	- 1	1	i							

										The state of the s	1
	Ç		141	Elm Stree	neers, Inc. et York 14203	'n	ODINGLO	2	Во	oring No.	EB-3
	<u>Q</u>	4	Pho	one: 716-84	47-1630		BORING LO	J	Sh	neet 1 of:	
cc	OMPA	VIV.	Fax www	c: 716-847- v.cscos.com						ject No.:	
Projec	t Nam	e:							Surfa	ce Elev.:	
Le	ocatio		1041 H	HEST AC	ve Louceo	ns my				Datum:	1/20/10
5	Clier	-				·				tart Date: ish Date:	4/29/18
Drillin	ng Firi Grou	_	vator 7	Depth	Date & Time	Drill Rig:					RiBALAGO
		_	vater le Drilling:	Бериі	10:20	Casing:		Rock Core:		Undist:	CITOTO CHESICA
Befor			Removal:		v . LO	Sampler:		Other:			
		_	Removal:			Hammer:					
			(N No	. of blows	to drive sampler	12" w/140 lb. ha	mmer falling 30" AST	M D-1586, Stan	dard Pen		
Depth (ft)	Sample No.	Symbol	Blows on Sampler per 6"	c - coarse m - mediun f - fine			DESCRIPTION vel, C - Clay, cly - claye	a - and - s - some - I - little - t - trace	20-35%	(e.g., relative	COMMENTS N-value, recovery, e moisture, core run, D, % recovered)
1		$ \int$		011-	3" Topso11	/				1.10	pm
2	311-48" LANGER ANGUIAM BRAVEL AND ROLK,										
3											
										2.5 p	on
4		Ц									
E				Du	310 Slub					824	Rio m
5				- · · ·	2 - sent					06.7	madd
6											
111				3"-1.	5" ANGU IAM	GRAVEL	Through SiLT	yuny		2/)	¢ _
M										551.0	g ppm
8				15"	TO STATE OF	YEEWN 1743	+ Sivey CLipy				
7		H									
9				120 B	CING HIT R	sarling/a	una snooty by	PAVAL		10.5p	pm
10				l	Attple Col						
11											
40											
12	1									 	
13											
14											
15											
16											
٣	İ										
17	1										
40											
18	1			 					· · · · · · · · · · · · · · · · · · ·		
19				1							
	1									<u> </u>	
20											
21											
 -	1										
22	1									<u></u>	


CC		- AN	141 Buf Pho IES Fax	Elm Stree	York 14203 47-1630 1454	В	ORING LO	G	Sh	eet 1 of:
Projec	t Nam	e:	www	w.cscos.com						ce Elev.:
	ocatio		10.41 11	I ST	ave Loc	LOOKE M	/			Datum:
	Clier	- 1				/			Sta	art Date: 4/29/14
Drillii	ng Firi	m:	NATUR	es wa	y					sh Date:
	Grou	ndv	vater	Depth '	Date & Time	Drill Rig:				spector: R. BACKERT
			le Drilling:		10:40	Casing:		Rock Core:		Undist:
			Removal:			Sampler: Hammer:		Other:		
An	er cas	ing	Removal:	of blows	to drive sampler		mmer falling 30" AST	M D-1586, Stan	dard Pene	etration Test)
Depth (ft)	Sample No.	Symbol	- 1	c - coarse m - mediur f - fine	n	MATERIAL	DESCRIPTION vel, C - Clay, cly - claye	a - and - s - some - l - little -	35-50% 20-35%	COMMENTS (e.g., N-value, recovery, relative moisture, core run, RQD, % recovered)
1					1.8 ppm					
2										
3				. الاستادات	1167 7 200	1006	My Ciny /An	. locaka	2001	23
4				75 75	48 1100	JANE SI	MYCHY MA	garac 144	vec -	2.3ppm
5				011-5	" Sluh					147.3 ppm
1/2				511.	244 VENSE	SITTY CO	My Brown			
"al						•				
7				24"	411 807	7018X SIL	y panbla	un Ciri		34. 7ppm
8		Н		2.1	2. 11. 11.2 1	Trender I	17 C II			
9				VOICE	SAYPLE	COLLECT	O AT Le'			
10										
11										
12										
13										
14										
15										
16										
17										
18										
19										
20										
21	<u> </u>			1						
oò.										
22	-									
23								·····		

											,
		1	141	Elm Stree					Во	oring No.	EB-8
CC			Pho	falo, New one: 716-8 :: 716-847-		E	BORING LO	G	Sh	eet 1 of:	
	JIVII	41V	WWW	v.cscos.com					Pro	ject No.:	
Projec	t Nam	e:	- inc						Surfa	ce Elev.:	
L	ocatio	n:	641 4	VEST I	ANE LOCK	PORT N	V			Datum:	
	Clier	ıt:				/				art Date:	4/29/19
Drillir	ıg Firi	n:								ish Date:	
	Grou			Depth	Date & Time	Drill Rig:			In	spector:	R. BACHERE
			le Drilling:		11:05	Casing:		Rock Core:		Undist:	1
			Removal:			Sampler:		Other:			
Απο	er Cas	ing	Removal:	of blows	to drive campler	Hammer:	mmer falling 30" AST	<u> </u> [M D-1586, Stan	dard Pen	etration Te	est)
_ (П	(14 140	. OI DIOWS	to unive sampler	12 W/140 ID. 11a	miller falling 00 7101				COMMENTS
(£)	ele .	00	Blows on	c - coarse				a - and - s - some -	35-50% 20-35%		N-value, recovery,
Depth (ft)	Sample No.	E	Sampler per 6"	m - mediur f - fine			DESCRIPTION	t_traca	- 10-20% 0-10%		e moisture, core run,
۵	တ	်	pero		S - Sand	l, \$-Silt, G-Gra	vel, C - Clay, cly - clay	ey		RQ	D, % recovered)
				ALI	211 11					~ 3	000
1				0"-3" Topsoil							opm
2				311_	144 Finise 1	MALL AND	ulan anavi	·C			
					,, ,,,,,,,	111-0	ousepio divito.				
M						A				-72 0	
				144-	usu liquo isi	rown Silt	y CLAY/SOUT	-		3.8	pm
4		┨		042	3" scub			4			
5					J. scup					32p	am
		lt		3''-	204 WET 5	MOOTH GRI	avri_				
6						· · · · · · · · · · · · · · · · · · ·		,	/	·	·
_				20"	-36" HARL	BROWN SI	LAT 7'	E GIRAVELI	\$\$ 100To	<u> </u>	
7				₩.	300:16 11=	LACALLA	1 4+ 31	nroughou	<i>*</i>	3.5 p	a no.
8				TE .	L CHYPHI	POLLETE	1 27 3'			14	
		П			<u> </u>	7					
9	ľ										
40											
10					 						
11											
	1										
12											
											
13		١									
14											
	1										
15											
40											
16	1										
17			ļ								
Г	1										
18											
1											
19	-									<u> </u>	
20											
	1										
21	1										
22	1	1	1	1							

CC	QQ QMP/	À	141 Buf Pho Fax	Elm Stree	York 14203 47-1630 1454	Е	SORING LO	G	Sh	eet 1 of: ject No.:
Projec:	t Nam	e:	· · · · · · · · · · · · · · · · · · ·						Surfac	ce Elev.:
Lo	catio	n:	641 V	VIST	AVE. LOC	ikpout N	4			Datum:
	Clier	_								art Date: 4/29/,9
			NATU			Duill Dian				spector: R. BALLANT
	Grou		vater le Drilling:	Depth	Date & Time //: 25	Drill Rig: Casing:		Rock Core:		Undist:
Befor			Removal:		11.00	Sampler:		Other:		
			Removal:			Hammer:				
			(N No	. of blows	to drive sampler	12" w/140 lb. ha	mmer falling 30" AST	M D-1586, Stan	dard Pene	
Depth (ft)	Sample No.	Symbol	Blows on Sampler per 6"	c - coarse m - mediur f - fine			DESCRIPTION Ivel, C - Clay, cly - clay	a - and - s - some - I - little - t - trace	20-35% 10-20%	COMMENTS (e.g., N-value, recovery, relative moisture, core run, RQD, % recovered)
1				011	S" Aspn A	I PROLL				5.1ppm
									=	
2				511.	30" FINE	SMALL AND	um brank	Though S	27	
3		П						-		
. 4				30"-0	164 DANKE B	nown/sorg	SILTY CLAY			16.8 pgm
				011	3" slub					20 4
5				311-	284 546	CHANTH A	OP 6			29.8 ppm
6				281	JOION SOFT	DANK BE	ann Sitry Cl	Ay		
7				!	eina Hit pi			7		
				J W.	# NO SI	AMPLE COLL	ected			A.Sppm
. 8		\vdash								
9										
10										
11										
12										
13										
14	1									
15										
16										
17										
1.0										
18										
19							1			
20										
]						\			
21	1									
22										
	1									
23										<u></u>

	OMP/		Bu Ph IES Fax	Elm Stree	York 14203 47-1630 -1454	В	ORING LO	G	Sh Proj	ring No. eet 1 of: ect No.:	E3.7
Projec		-							Surfac	e Elev.:	
L	ocatio		10416	VEST.	AVE. LOW	HOUT N	<i>y</i>		St.	Datum:	ulache
Drillio	Clier ng Firi	_	NATU	058.						sh Date:	4/29/19
Billin	Grou			Depth	Date & Time	Drill Rig:					R.BAUKHT
	V	Vhi.	le Drilling:	,	11:40	Casing:		Rock Core:		Undist:	
Befor	e Cas	ing	Removal:			Sampler:		Other:			
Afte	er Cas	ing	Removal:			Hammer:	6 HI 00H A 0T	11 D 4 F00 OL	Janet Dana	t	
		1	(N No	. of blows	to drive sampler	12" w/140 lb. ha	mmer falling 30" AST	M D-1586, Stan	dard Pene		COMMENTS
Depth (ft)	Sample No.	Symbol	Blows on Sampler per 6"	oler m - medium MATERIAL DESCRIPTION s - some - 20-35%							N-value, recovery, moisture, core run, D, % recovered)
1				011-	54 ASPARO		3.8	pon			
2											
3				511,3	35' ANJULAN	CARNEL	Throughout ? Ixah Ty CLAY	s.ur			
4				35"	us" lisht	BROWN Sil	TY CLAY			4.8	pp m
5				21/1	154 5.6	Cusa Tel Na	. homes			10 8	ppm
5					-15" Fint	•				W.0	ppia
1/2				18"	Jun Light	ر لاده ودور	Sitty CLAY.				
n				- V Bo	RING Hit	REFUSAL	AT 7'			7.5	ppm
8		Н			- + COL	EURD SAM	ove ATT'				And the second s
9											
10											
11											
12											
13											
14											
15		-									
16											
17											
18	_										
19											
20					-						
21											
	1										
22	4										
23											

			141 Buf Pho	Elm Stree	York 14203 47-1630	Е	ORING LO	G	Sh	eet 1 of:	E8-8
			ww	w.cscos.com						ject No.: ce Elev.:	
Projec	t Nam ocatio	-	1	· F 1	1 (1 1)	<u></u>			Suria	Datum:	
	Clier	-	6411	vest A	VE. LOCK	rons ny			St	art Date:	4/29/19
Drillir			NATUR	ES IN	Dre				Fini	sh Date:	110 711
	Grou			Depth	Date & Time	Drill Rig:			In	spector:	R.BACKERT
	V	Vhi	le Drilling:		12:00	Casing:		Rock Core:		Undist:	
			Removal:			Sampler:		Other:			
Afte	er Cas	ing	Removal:	of blowe	to drive campler	Hammer:	mmer falling 30" AS	TM D-1586 Stan	dard Pene	etration Te	est)
Depth (ft)	Sample No.	Symbol	Blows on Sampler per 6"	c - coarse m - mediur f - fine	n	MATERIAL	DESCRIPTION vel, C - Clay, cly - clay	a - and - s - some - I - little -	35-50%	(e.g., relative	COMMENTS N-value, recovery, moisture, core run, D, % recovered)
1				011-1	10" Aspnava	/GRAVEL				12.	9 pp m
2											
3				10".	48" light	Brown D	ENSE DRY.	Silty CLA	γ.	17.4	2000
4											japa II o
5					·54 Stub					9.0	ppm
6				511-	20" Fixe 0	BRAVEL/SI	I				
7				20"-	30" Bour	BLOWN C	RAIS. IRA.				
8				3011	-4801 Ligni	t Brown n	DIST WAY /SI	noon Grave	_	28.1	ppm
				04-13	ET SMOTH	GRAVEL T	LAI LAI LANGUARC LOIST CLAY /SI TARRUSH SILT?	CRAY		10	8ppm
10				77 3	DORING Hi	t NEGUSA	C AT 9'	SATUSATE	<i>D</i>		· o pjam
11			-								
12											
13											
14											
15											
16											
17			* ***								
<u> </u>											
18	-									<u> </u>	
19	_										
20											
0.4	1										
21	-		ļ							 	
22				1							

			14	1 Elm Stree	neers, Inc. et York 14203	D			В	oring No.	£3-10
	\mathbb{Q}	Ţ	Ph	one: 716-8	47-1630	BC	DRING LO	خ	Sł	neet 1 of:	
CC	OMP	AN		x: 716-847- w.cscos.com					Pro	ject No.:	
Projec	t Nan	ie:							Surfa	ce Elev.:	
L	ocatio	n:	641 6	NEST	ALG LOCK	PORT MY				Datum:	
	Clie				7	· · · · · · · · · · · · · · · · · · ·				art Date:	4/29/19
Drillii	ng Fir									ish Date:	77
	Grou			Depth	Date & Time	Drill Rig:			In	spector:	R. BACKER
Dofo.			ile Drilling: Removal:		1:00	Casing: Sampler:		Rock Core:		Undist:	
			Removal:			Hammer:		Other:			
	or Cas	,,,,,		of blows	to drive sampler		mer falling 30" AST	M D-1586, Stan	dard Pen	etration Te	est)
£	a .							a - and -			COMMENTS
Depth (ft)	Sample No.	Symbol	Blows on Sampler per 6"	c - coarse m - mediur f - fine		MATERIAL D	ESCRIPTION I, C - Clay, cly - claye	s - some - I - little -	20-35% 10-20%	relative	N-value, recovery, e moisture, core run, D, % recovered)
1				ALL	5 Trues	<i>{</i> /				2 0	n 00
					5 Topsoi					2.0	ppm
2				C11	1164	1. 70.	,	4			
3				3		3.3%	onn				
					7,770	juincon	DENSE SO. AVEC THrow	gasar			
4		L									
				011.	34 Sluk		•			0.0	
5				7'1 . /	in Dough	usulan la				2.90	pm
6				1 70	s reace in	WYWNIK A.	KAUPI				
					111111 111	120	100 - 1 ·			9 6	
7				1011	· 48 1701S	+ ISHOW	USUTY CL	Ay		3.5	pm
8		ota		×301	CING 147	elfus ac	AV8'		~		
9					\$ NO SI	ample la	CRUTAD				
10											
11			***			****					
12											
13											
14											
15											
16										·	
17											·
18											
19											
20											

	C&S Engineers, Inc.	GI	ROUND	WATE	R		Well No.	MW-1
	141 Elm Street Buffalo, New York 14203		ERVAT					IVI VV - 1
COMPANIE	Phone: 716-847-1630 Fax: 716-847-1454		STRUC				roject No.:	Q47005001
	www.cscos.com	CON	SIKUU	HON	LUG	Sur	face Elev.:	
Project Name: 64	West Avenue West Avenue Lockport New Yor	-12					Datum:	4/20/40
Location: 64°	i west Avenue Lockport New Yor	K					Start Date: nish Date:	4/29/19 4/29/19
Drilling Firm: Na	tures Way						Inspector:	4/29/19 RB
Dinning Time.	Top Protective Ca	asing	Drill Rig:				Casing:	110
	Top of Riser			(provide de	escription of	observation v		method of
	 		Notes:					er information)
- 11						boring. We		
	0'-0" Ground Surface		_		es. Well is l	ocated on S	outhern por	rtion of property in
			the parking	lot.				
	Surface Backfill Mater	<u>ial</u>						
	Soil Cuttings							
	Bentonite Slurry							
X	Cement/Bentonite	Grout						
	Concrete							
	X							
	X 1in. Bore Hole Diame	ter						
	Ain Wall Bianadan							
	X 1in. Well Diameter							
	Well Material							
l N	X PVC							
	Stainless Steel							
lă l	<u> </u>							
	Backfill Material		G	roundwat		ement Dat		
	Soil Cuttings				Depth to		Tide	
l N	Bentonite Slurry	_	Date	Time	Water	Elevation	Status	
	Cement/Bentonite	Grout	4/29/2019		7.7ft.	0.3		
X	Concrete							
	X							
	X Depth To:							
\square	X Top of Seal							
	<u>Seal Material</u>							
	Bentonite Chips/P	ellets						
	Bentonite Slurry							
	Cement/Bentonite	Grout						
	Top of Filter P	ack						
	3Ft. Top of Screen							
	Screen Slot Size							
	X 010 in							
	015 in							
	020 in							
	025 in							
	Filter Material							
	X 00 Sand Pack							
	0 Sand Pack							
	1 Sand Pack							
	2 Sand Pack							
	3 Sand Pack							
	4 Sand Pack							
	Bottom of Scr	oon						

8FT. Bottom of Bore Hole

	C&S Engineers, Inc. 141 Elm Street	_	ROUND				Well No.	MW-2
	Buffalo, New York 14203 Phone: 716-847-1630	OBS	ERVAT	ION W	ELL	P	roject No.:	Q47005001
COMPANIES	Fax: 716-847-1454 www.cscos.com	CON	STRUC	TION I	LOG		face Elev.:	4.7.0000
Project Name: 641 W							Datum:	
Location: 641 W	est Avenue Lockport New Yorl	k				,	Start Date:	4/29/19
Client:						Fi	nish Date:	4/29/19
Drilling Firm: Nature							Inspector:	RB
	Top Protective Ca	sing	Drill Rig:	, ,, ,			Casing:	
I 	lop of Riser		Notes:	(provide de	scription of o	observation v	vell location,	method of
	Top of Riser O'-O" Ground Surface Surface Backfill Material Soil Cuttings Bentonite Slurry Cement/Bentonite Concrete 1in. Bore Hole Diamet 1in. Well Diameter Well Material X PVC Stainless Steel Backfill Material Soil Cuttings Bentonite Slurry Cement/Bentonite Concrete Depth To: Top of Seal Seal Material Bentonite Chips/Pel Bentonite Slurry Cement/Bentonite Top of Filter Pel 3Ft. Top of Screen	ial Grout er Grout ellets Grout ack	Notes: Well was cr collecting \	construction reated via d OC sample	n, developm lirecet push es. Well is l	boring. We	well location, and any othe II was purg /estern poir	er information)
	Screen Slot Size X 010 in							
	015 in 020 in							
	025 in							
	—							
	Filter Material X 00 Sand Pack							
	0 Sand Pack							
	1 Sand Pack							
	2 Sand Pack							
	3 Sand Pack							
	4 Sand Pack							
	Bottom of Screen	een						

8FT. Bottom of Bore Hole

	C&S Engineers, Inc. 141 Elm Street		ROUND				Well No.	MW-3
	Buffalo, New York 14203 Phone: 716-847-1630	OBS	ERVAT	ION W	'ELL	P	roject No.:	Q47005001
COMPANIES	Fax: 716-847-1454 www.cscos.com	CON	STRUC	TION	LOG		face Elev.:	
Project Name: 641 V							Datum:	
Location: 641 V	West Avenue Lockport New Yor	k				,	Start Date:	4/29/19
Client:						Fi	nish Date:	4/29/19
Drilling Firm: Natu		-					Inspector:	RB
	Top Protective Ca	sing	Drill Rig:				Casing:	
	Top of Riser		Notes:	(provide de	scription of o	observation v	well location	, method of er information)
	O'-0" Ground Surface Surface Backfill Materi Soil Cuttings Bentonite Slurry Cement/Bentonite Concrete		Well was cr	eated via d OC sample	lirecet push	boring. We	II was purg	
	1in. Well Diameter Well Material PVC	er						
	Stainless Steel Backfill Material		G	roundwat	er Measur	ement Data	a	
	Soil Cuttings				Depth to	Water	Tide	
	Bentonite Slurry		Date	Time	Water	Elevation		
	Cement/Bentonite	Grout	4/29/2019		6.3ft.	1.7ft.		
	Concrete							
	\langle							
	< Depth To:							
	Top of Seal							
	Seal Material Pentanita China/Re	alloto						
	Bentonite Chips/Pe	ellets						
	Cement/Bentonite	Grout						
	Cementonite	Giout						
	Top of Filter P	ack						
	3Ft. Top of Screen							
	Screen Slot Size							
	X 010 in							
	015 in							
	020 in							
	025 in							
	Filter Meterial							
	Filter Material X 00 Sand Pack							
	0 Sand Pack							
	1 Sand Pack							
	2 Sand Pack							
	3 Sand Pack							
	4 Sand Pack							
	Bottom of Scre	een						

8FT. Bottom of Bore Hole

APPENDIX B Laboratory Analytical Reports - Soil

ANALYTICAL REPORT

Lab Number: L1917600

Client: C&S Companies

141 Elm Street, Suite 100

Buffalo, NY 14203

ATTN: Cody Martin
Phone: (716) 847-1630

Project Name: 641 WEST AVE (NIAGARA COUNTY)

Project Number: Not Specified Report Date: 05/10/19

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: 641 WEST AVE (NIAGARA COUNTY)

Project Number: Not Specified

Lab Number:

L1917600

Report Date: 05/10/19

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1917600-01	EB-1	SOIL	641 WEST AVE., LOCKPORT, NY	04/29/19 09:00	04/29/19
L1917600-02	DUP (EB-1)	SOIL	641 WEST AVE., LOCKPORT, NY	04/29/19 09:00	04/29/19
L1917600-03	EB-3	SOIL	641 WEST AVE., LOCKPORT, NY	04/29/19 10:20	04/29/19
L1917600-04	EB-4	SOIL	641 WEST AVE., LOCKPORT, NY	04/29/19 10:40	04/29/19
L1917600-05	EB-5	SOIL	641 WEST AVE., LOCKPORT, NY	04/29/19 11:05	04/29/19
L1917600-06	EB-7	SOIL	641 WEST AVE., LOCKPORT, NY	04/29/19 11:40	04/29/19
L1917600-07	EB-9	SOIL	641 WEST AVE., LOCKPORT, NY	04/29/19 12:30	04/29/19

Project Name: 641 WEST AVE (NIAGARA COUNTY) Lab Number: L1917600
Project Number: Not Specified Report Date: 05/10/19

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.

Project Name: 641 WEST AVE (NIAGARA COUNTY) Lab Number: L1917600
Project Number: Not Specified Report Date: 05/10/19

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Sample Receipt

L1917600-01 and -02: The collection date and time on the chain of custody was 29-APR-19 09:00; however, the collection date/time on the container label was 29-APR-19 09:20. At the client's request, the collection date/time is reported as 29-APR-19 09:00.

Volatile Organics

L1917600-01, -02, -06, and -07: The analysis of Volatile Organics by EPA Method 5035/8260 Low Level could not be performed due to the elevated concentrations of non-target compounds in the sample. L1917600-03: The sample has elevated detection limits due to the dilution required by the elevated concentrations of non-target compounds in the sample.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Melusa Cripps Melissa Cripps

Authorized Signature:

Title: Technical Director/Representative

ALPHA

Date: 05/10/19

ORGANICS

VOLATILES

L1917600

05/10/19

Project Name: 641 WEST AVE (NIAGARA COUNTY)

Project Number: Not Specified

SAMPLE RESULTS

Date Collected: 04/29/19 09:00

Lab Number:

Report Date:

Date Received: 04/29/19
Field Prep: Not Specified

Sample Location: 641 WEST AVE., LOCKPORT, NY

EB-1

L1917600-01

Sample Depth:

Lab ID:

Client ID:

Matrix: Soil
Analytical Method: 1,8260C
Analytical Date: 05/06/19 21:34

Analyst: JC Percent Solids: 86%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 High - V	Vestborough Lab)				
Methylene chloride	ND		ug/kg	250	110	1
1,1-Dichloroethane	ND		ug/kg	50	7.2	1
Chloroform	ND		ug/kg	75	7.0	1
Carbon tetrachloride	ND		ug/kg	50	11.	1
1,2-Dichloropropane	ND		ug/kg	50	6.2	1
Dibromochloromethane	ND		ug/kg	50	7.0	1
1,1,2-Trichloroethane	ND		ug/kg	50	13.	1
Tetrachloroethene	ND		ug/kg	25	9.8	1
Chlorobenzene	ND		ug/kg	25	6.3	1
Trichlorofluoromethane	ND		ug/kg	200	35.	1
1,2-Dichloroethane	ND		ug/kg	50	13.	1
1,1,1-Trichloroethane	ND		ug/kg	25	8.3	1
Bromodichloromethane	ND		ug/kg	25	5.4	1
trans-1,3-Dichloropropene	ND		ug/kg	50	14.	1
cis-1,3-Dichloropropene	ND		ug/kg	25	7.9	1
Bromoform	ND		ug/kg	200	12.	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	25	8.3	1
Benzene	ND		ug/kg	25	8.3	1
Toluene	ND		ug/kg	50	27.	1
Ethylbenzene	ND		ug/kg	50	7.0	1
Chloromethane	ND		ug/kg	200	46.	1
Bromomethane	ND		ug/kg	100	29.	1
Vinyl chloride	ND		ug/kg	50	17.	1
Chloroethane	ND		ug/kg	100	22.	1
1,1-Dichloroethene	ND		ug/kg	50	12.	1
trans-1,2-Dichloroethene	ND		ug/kg	75	6.8	1
Trichloroethene	ND		ug/kg	25	6.8	1
1,2-Dichlorobenzene	ND		ug/kg	100	7.2	1

MDL

Dilution Factor

Project Name: Lab Number: 641 WEST AVE (NIAGARA COUNTY) L1917600

Project Number: Report Date: Not Specified 05/10/19

SAMPLE RESULTS

Qualifier

Units

RL

Lab ID: Date Collected: 04/29/19 09:00 L1917600-01

Date Received: Client ID: EB-1 04/29/19 Sample Location: 641 WEST AVE., LOCKPORT, NY Field Prep: Not Specified

Result

Sample Depth:

Parameter

rarameter	Result	Qualifier	Units	INL	INDL	Dilution i actor
Volatile Organics by EPA 5035 High	n - Westborough Lab					
1,3-Dichlorobenzene	ND		ug/kg	100	7.4	1
1,4-Dichlorobenzene	ND		ug/kg	100	8.5	1
Methyl tert butyl ether	ND		ug/kg	100	10.	1
p/m-Xylene	ND		ug/kg	100	28.	1
o-Xylene	ND		ug/kg	50	14.	1
cis-1,2-Dichloroethene	ND		ug/kg	50	8.7	1
Styrene	ND		ug/kg	50	9.8	1
Dichlorodifluoromethane	ND		ug/kg	500	46.	1
Acetone	ND		ug/kg	500	240	1
Carbon disulfide	ND		ug/kg	500	230	1
2-Butanone	ND		ug/kg	500	110	1
4-Methyl-2-pentanone	ND		ug/kg	500	64.	1
2-Hexanone	ND		ug/kg	500	59.	1
1,2-Dibromoethane	ND		ug/kg	50	14.	1
n-Butylbenzene	120		ug/kg	50	8.3	1
sec-Butylbenzene	190		ug/kg	50	7.3	1
tert-Butylbenzene	13	J	ug/kg	100	5.9	1
1,2-Dibromo-3-chloropropane	ND		ug/kg	150	50.	1
Isopropylbenzene	36	J	ug/kg	50	5.4	1
p-lsopropyltoluene	ND		ug/kg	50	5.4	1
Naphthalene	ND		ug/kg	200	32.	1
n-Propylbenzene	73		ug/kg	50	8.5	1
1,2,4-Trichlorobenzene	ND		ug/kg	100	14.	1
1,3,5-Trimethylbenzene	ND		ug/kg	100	9.6	1
1,2,4-Trimethylbenzene	ND		ug/kg	100	17.	1
Methyl Acetate	ND		ug/kg	200	47.	1
Cyclohexane	ND		ug/kg	500	27.	1
Freon-113	ND		ug/kg	200	34.	1
Methyl cyclohexane	ND		ug/kg	200	30.	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	116	70-130	
Toluene-d8	89	70-130	
4-Bromofluorobenzene	105	70-130	
Dibromofluoromethane	111	70-130	

Project Name: 641 WEST AVE (NIAGARA COUNTY)

Report Date:

L1917600

05/10/19

Project Number: Not Specified

SAMPLE RESULTS

Date Collected: 04/29/19 09:00

Lab ID: L1917600-02 Client ID: DUP (EB-1)

Date Received: 04/29/19

641 WEST AVE., LOCKPORT, NY Sample Location:

Field Prep:

Lab Number:

Not Specified

Sample Depth:

Matrix: Soil Analytical Method: 1,8260C Analytical Date: 05/06/19 22:00

Analyst: JC 79% Percent Solids:

1,1-Dichloroethane	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1,1-Dichloroethane	Volatile Organics by EPA 5035 Hi	gh - Westborough Lab					
Chloroform ND ug/kg 120 11. 1 Carbon tetrachloride ND ug/kg 81 19. 1 1,2-Dichloropropane ND ug/kg 81 10. 1 Dibromochloromethane ND ug/kg 81 11. 1 1,1,2-Trichloroethane ND ug/kg 81 22. 1 Tetrachloroethane ND ug/kg 40 16. 1 Tochloroethane ND ug/kg 40 10. 1 Trichlorofutoornethane ND ug/kg 320 56. 1 1,2-Dichloroethane ND ug/kg 81 21. 1 1,1-1-Trichloroethane ND ug/kg 40 14. 1 Bomodichloromethane ND ug/kg 40 8.8 1 trans-1,3-Dichloropropene ND ug/kg 81 22. 1 cis-1,3-Dichloropropene ND ug/kg 320 20.	Methylene chloride	ND		ug/kg	400	180	1
Carbon tetrachloride ND ug/kg 81 19 1 1,2-Dichloropropane ND ug/kg 81 10. 1 Dibromochloromethane ND ug/kg 81 11. 1 1,1,2-Trichloroethane ND ug/kg 81 22. 1 Tetrachloroethane ND ug/kg 40 16. 1 Chloroberane ND ug/kg 40 10. 1 Trichlorofluoromethane ND ug/kg 320 56. 1 1,2-Dichloroethane ND ug/kg 40 14. 1 1,1-Trichloroethane ND ug/kg 40 18. 1 Bromodichloromethane ND ug/kg 40 8.8 1 Bromodichloromethane ND ug/kg 40 8.8 1 trans-1,3-Dichloropropene ND ug/kg 81 22. 1 cis-1,3-Dichloropropene ND ug/kg 40 13. <td>1,1-Dichloroethane</td> <td>ND</td> <td></td> <td>ug/kg</td> <td>81</td> <td>12.</td> <td>1</td>	1,1-Dichloroethane	ND		ug/kg	81	12.	1
1,2-Dichloropropane ND	Chloroform	ND		ug/kg	120	11.	1
Dibromochloromethane ND	Carbon tetrachloride	ND		ug/kg	81	19.	1
1,1,2-Trichloroethane ND ug/kg 81 22. 1 Tetrachloroethene ND ug/kg 40 16. 1 Chlorobenzene ND ug/kg 40 10. 1 Trichlorofluoromethane ND ug/kg 320 56. 1 1,2-Dichloroethane ND ug/kg 81 21. 1 1,1,1-Trichloroethane ND ug/kg 40 14. 1 Bromodichloromethane ND ug/kg 40 14. 1 Bromodichloromethane ND ug/kg 40 8.8 1 trans-1,3-Dichloropropene ND ug/kg 81 22. 1 cis-1,3-Dichloropropene ND ug/kg 40 13. 1 Bromoform ND ug/kg 320 20. 1 1,1,2,2-Tetrachloroethane ND ug/kg 40 13. 1 Toluene ND ug/kg 40 13. <t< td=""><td>1,2-Dichloropropane</td><td>ND</td><td></td><td>ug/kg</td><td>81</td><td>10.</td><td>1</td></t<>	1,2-Dichloropropane	ND		ug/kg	81	10.	1
Tetrachloroethene ND ug/kg 40 16. 1 Chlorobenzene ND ug/kg 40 10. 1 Trichlorofluoromethane ND ug/kg 320 56. 1 1,2-Dichloroethane ND ug/kg 81 21. 1 1,1,1-Trichloroethane ND ug/kg 40 14. 1 Bromodichloromethane ND ug/kg 40 8.8 1 trans-1,3-Dichloropropene ND ug/kg 81 22. 1 cis-1,3-Dichloropropene ND ug/kg 40 13. 1 Bromoform ND ug/kg 320 20. 1 1,1,2,2-Tetrachloroethane ND ug/kg 40 13. 1 Benzene ND ug/kg 40 13. 1 Toluene ND ug/kg 81 44. 1 Ethylbenzene ND ug/kg 81 11. 1	Dibromochloromethane	ND		ug/kg	81	11.	1
Chlorobenzene ND	1,1,2-Trichloroethane	ND		ug/kg	81	22.	1
Trichlorofluoromethane ND ug/kg 320 56. 1 1,2-Dichloroethane ND ug/kg 81 21. 1 1,1,1-Trichloroethane ND ug/kg 40 14. 1 Bromodichloromethane ND ug/kg 40 8.8 1 trans-1,3-Dichloropropene ND ug/kg 81 22. 1 cis-1,3-Dichloropropene ND ug/kg 40 13. 1 Bromoform ND ug/kg 320 20. 1 1,1,2,2-Tetrachloroethane ND ug/kg 40 13. 1 Benzene ND ug/kg 40 13. 1 Toluene ND ug/kg 81 44. 1 Ethylbenzene ND ug/kg 81 11. 1 Chloromethane ND ug/kg 320 75. 1 Bromomethane ND ug/kg 81 27. 1 <tr< td=""><td>Tetrachloroethene</td><td>ND</td><td></td><td>ug/kg</td><td>40</td><td>16.</td><td>1</td></tr<>	Tetrachloroethene	ND		ug/kg	40	16.	1
1,2-Dichloroethane ND ug/kg 81 21. 1 1,1,1-Trichloroethane ND ug/kg 40 14. 1 Bromodichloromethane ND ug/kg 40 8.8 1 Itrans-1,3-Dichloropropene ND ug/kg 81 22. 1 cis-1,3-Dichloropropene ND ug/kg 40 13. 1 Bromoform ND ug/kg 40 13. 1 Bromoform ND ug/kg 40 13. 1 Bromoform ND ug/kg 40 13. 1 Benzene ND ug/kg 40 13. 1 Toluene ND ug/kg 81 44. 1 Ethylbenzene ND ug/kg 81 11. 1 Chloromethane ND ug/kg 320 75. 1 Bromomethane ND ug/kg 81 27. 1 Chloroethane <td>Chlorobenzene</td> <td>ND</td> <td></td> <td>ug/kg</td> <td>40</td> <td>10.</td> <td>1</td>	Chlorobenzene	ND		ug/kg	40	10.	1
1,1,1-Trichloroethane	Trichlorofluoromethane	ND		ug/kg	320	56.	1
Bromodichloromethane ND ug/kg 40 8.8 1 trans-1,3-Dichloropropene ND ug/kg 81 22. 1 cis-1,3-Dichloropropene ND ug/kg 40 13. 1 Bromoform ND ug/kg 320 20. 1 1,1,2,2-Tetrachloroethane ND ug/kg 40 13. 1 Benzene ND ug/kg 40 13. 1 Toluene ND ug/kg 81 44. 1 Ethylbenzene ND ug/kg 81 11. 1 Chloromethane ND ug/kg 320 75. 1 Bromomethane ND ug/kg 160 47. 1 Vinyl chloride ND ug/kg 81 27. 1 Chloroethane ND ug/kg 81 19. 1 1,1-Dichloroethene ND ug/kg 81 19. 1 tra	1,2-Dichloroethane	ND		ug/kg	81	21.	1
trans-1,3-Dichloropropene ND ug/kg 81 22. 1 cis-1,3-Dichloropropene ND ug/kg 40 13. 1 Bromoform ND ug/kg 320 20. 1 1,1,2,2-Tetrachloroethane ND ug/kg 40 13. 1 Benzene ND ug/kg 40 13. 1 Benzene ND ug/kg 40 13. 1 Toluene ND ug/kg 81 44. 1 Ethylbenzene ND ug/kg 81 11. 1 Chloromethane ND ug/kg 81 11. 1 Chloromethane ND ug/kg 320 75. 1 Bromomethane ND ug/kg 160 47. 1 Vinyl chloride ND ug/kg 81 27. 1 Chloroethane ND ug/kg 81 27. 1 Chloroethane ND ug/kg 81 27. 1 Chloroethane ND ug/kg 81 19. 1 1,1-Dichloroethene ND ug/kg 40 11. 1	1,1,1-Trichloroethane	ND		ug/kg	40	14.	1
cis-1,3-Dichloropropene ND ug/kg 40 13. 1 Bromoform ND ug/kg 320 20. 1 1,1,2,2-Tetrachloroethane ND ug/kg 40 13. 1 Benzene ND ug/kg 40 13. 1 Toluene ND ug/kg 81 44. 1 Ethylbenzene ND ug/kg 81 11. 1 Chloromethane ND ug/kg 320 75. 1 Bromomethane ND ug/kg 160 47. 1 Vinyl chloride ND ug/kg 81 27. 1 Chloroethane ND ug/kg 160 37. 1 1,1-Dichloroethene ND ug/kg 81 19. 1 trans-1,2-Dichloroethene ND ug/kg 40 11. 1 Trichloroethene ND ug/kg 40 11. 1	Bromodichloromethane	ND		ug/kg	40	8.8	1
Bromoform	trans-1,3-Dichloropropene	ND		ug/kg	81	22.	1
1,1,2,2-Tetrachloroethane ND ug/kg 40 13. 1 Benzene ND ug/kg 40 13. 1 Toluene ND ug/kg 81 44. 1 Ethylbenzene ND ug/kg 81 11. 1 Chloromethane ND ug/kg 320 75. 1 Bromomethane ND ug/kg 160 47. 1 Vinyl chloride ND ug/kg 81 27. 1 Chloroethane ND ug/kg 160 37. 1 1,1-Dichloroethene ND ug/kg 81 19. 1 trans-1,2-Dichloroethene ND ug/kg 120 11. 1 Trichloroethene ND ug/kg 40 11. 1	cis-1,3-Dichloropropene	ND		ug/kg	40	13.	1
Benzene ND ug/kg 40 13. 1 Toluene ND ug/kg 81 44. 1 Ethylbenzene ND ug/kg 81 11. 1 Chloromethane ND ug/kg 320 75. 1 Bromomethane ND ug/kg 160 47. 1 Vinyl chloride ND ug/kg 81 27. 1 Chloroethane ND ug/kg 160 37. 1 1,1-Dichloroethene ND ug/kg 81 19. 1 trans-1,2-Dichloroethene ND ug/kg 120 11. 1 Trichloroethene ND ug/kg 40 11. 1	Bromoform	ND		ug/kg	320	20.	1
Toluene ND ug/kg 81 44. 1 Ethylbenzene ND ug/kg 81 11. 1 Chloromethane ND ug/kg 320 75. 1 Bromomethane ND ug/kg 160 47. 1 Vinyl chloride ND ug/kg 81 27. 1 Chloroethane ND ug/kg 160 37. 1 1,1-Dichloroethene ND ug/kg 81 19. 1 trans-1,2-Dichloroethene ND ug/kg 120 11. 1 Trichloroethene ND ug/kg 40 11. 1	1,1,2,2-Tetrachloroethane	ND		ug/kg	40	13.	1
Ethylbenzene ND ug/kg 81 11. 1 Chloromethane ND ug/kg 320 75. 1 Bromomethane ND ug/kg 160 47. 1 Vinyl chloride ND ug/kg 81 27. 1 Chloroethane ND ug/kg 160 37. 1 1,1-Dichloroethene ND ug/kg 81 19. 1 trans-1,2-Dichloroethene ND ug/kg 120 11. 1 Trichloroethene ND ug/kg 40 11. 1	Benzene	ND		ug/kg	40	13.	1
Chloromethane ND ug/kg 320 75. 1 Bromomethane ND ug/kg 160 47. 1 Vinyl chloride ND ug/kg 81 27. 1 Chloroethane ND ug/kg 160 37. 1 1,1-Dichloroethene ND ug/kg 81 19. 1 trans-1,2-Dichloroethene ND ug/kg 120 11. 1 Trichloroethene ND ug/kg 40 11. 1	Toluene	ND		ug/kg	81	44.	1
Bromomethane ND ug/kg 160 47. 1 Vinyl chloride ND ug/kg 81 27. 1 Chloroethane ND ug/kg 160 37. 1 1,1-Dichloroethene ND ug/kg 81 19. 1 trans-1,2-Dichloroethene ND ug/kg 120 11. 1 Trichloroethene ND ug/kg 40 11. 1	Ethylbenzene	ND		ug/kg	81	11.	1
Vinyl chloride ND ug/kg 81 27. 1 Chloroethane ND ug/kg 160 37. 1 1,1-Dichloroethene ND ug/kg 81 19. 1 trans-1,2-Dichloroethene ND ug/kg 120 11. 1 Trichloroethene ND ug/kg 40 11. 1	Chloromethane	ND		ug/kg	320	75.	1
Chloroethane ND ug/kg 160 37. 1 1,1-Dichloroethene ND ug/kg 81 19. 1 trans-1,2-Dichloroethene ND ug/kg 120 11. 1 Trichloroethene ND ug/kg 40 11. 1	Bromomethane	ND		ug/kg	160	47.	1
1,1-Dichloroethene ND ug/kg 81 19. 1 trans-1,2-Dichloroethene ND ug/kg 120 11. 1 Trichloroethene ND ug/kg 40 11. 1	Vinyl chloride	ND		ug/kg	81	27.	1
trans-1,2-Dichloroethene ND ug/kg 120 11. 1 Trichloroethene ND ug/kg 40 11. 1	Chloroethane	ND		ug/kg	160	37.	1
Trichloroethene ND ug/kg 40 11. 1	1,1-Dichloroethene	ND		ug/kg	81	19.	1
-0 0	trans-1,2-Dichloroethene	ND		ug/kg	120	11.	1
1,2-Dichlorobenzene ND ug/kg 160 12. 1	Trichloroethene	ND		ug/kg	40	11.	1
	1,2-Dichlorobenzene	ND		ug/kg	160	12.	1

05/10/19

Project Name: 641 WEST AVE (NIAGARA COUNTY) Lab Number: L1917600

Project Number: Not Specified Report Date:

SAMPLE RESULTS

Lab ID: L1917600-02 Date Collected: 04/29/19 09:00

Client ID: DUP (EB-1) Date Received: 04/29/19
Sample Location: 641 WEST AVE., LOCKPORT, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 High	- Westborough Lab					
1,3-Dichlorobenzene	ND		ug/kg	160	12.	1
1,4-Dichlorobenzene	ND		ug/kg	160	14.	1
Methyl tert butyl ether	ND		ug/kg	160	16.	1
p/m-Xylene	ND		ug/kg	160	45.	1
o-Xylene	ND		ug/kg	81	24.	1
cis-1,2-Dichloroethene	ND		ug/kg	81	14.	1
Styrene	ND		ug/kg	81	16.	1
Dichlorodifluoromethane	ND		ug/kg	810	74.	1
Acetone	ND		ug/kg	810	390	1
Carbon disulfide	ND		ug/kg	810	370	1
2-Butanone	ND		ug/kg	810	180	1
4-Methyl-2-pentanone	ND		ug/kg	810	100	1
2-Hexanone	ND		ug/kg	810	96.	1
1,2-Dibromoethane	ND		ug/kg	81	22.	1
n-Butylbenzene	85		ug/kg	81	14.	1
sec-Butylbenzene	150		ug/kg	81	12.	1
tert-Butylbenzene	ND		ug/kg	160	9.6	1
1,2-Dibromo-3-chloropropane	ND		ug/kg	240	81.	1
Isopropylbenzene	23	J	ug/kg	81	8.8	1
p-Isopropyltoluene	ND		ug/kg	81	8.8	1
Naphthalene	ND		ug/kg	320	53.	1
n-Propylbenzene	47	J	ug/kg	81	14.	1
1,2,4-Trichlorobenzene	ND		ug/kg	160	22.	1
1,3,5-Trimethylbenzene	ND		ug/kg	160	16.	1
1,2,4-Trimethylbenzene	ND		ug/kg	160	27.	1
Methyl Acetate	ND		ug/kg	320	77.	1
Cyclohexane	ND		ug/kg	810	44.	1
Freon-113	ND		ug/kg	320	56.	1
Methyl cyclohexane	ND		ug/kg	320	49.	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	107	70-130	
Toluene-d8	91	70-130	
4-Bromofluorobenzene	102	70-130	
Dibromofluoromethane	106	70-130	

L1917600

05/10/19

Project Name: 641 WEST AVE (NIAGARA COUNTY)

D

L1917600-03

EB-3

Project Number: Not Specified

SAMPLE RESULTS

Date Collected: 04/29/19 10:20

Lab Number:

Report Date:

Date Received: 04/29/19

Field Prep: Sample Location: 641 WEST AVE., LOCKPORT, NY Not Specified

Sample Depth:

Lab ID:

Client ID:

Matrix: Soil Analytical Method: 1,8260C Analytical Date: 05/06/19 22:26

Analyst: JC 88% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by EPA 5035 High	- Westborough Lab)					
Methylene chloride	ND		ug/kg	740	340	2.5	
1,1-Dichloroethane	ND		ug/kg	150	22.	2.5	_
Chloroform	ND		ug/kg	220	21.	2.5	
Carbon tetrachloride	ND		ug/kg	150	34.	2.5	
1,2-Dichloropropane	ND		ug/kg	150	18.	2.5	
Dibromochloromethane	ND		ug/kg	150	21.	2.5	
1,1,2-Trichloroethane	ND		ug/kg	150	40.	2.5	
Tetrachloroethene	ND		ug/kg	74	29.	2.5	_
Chlorobenzene	ND		ug/kg	74	19.	2.5	
Trichlorofluoromethane	ND		ug/kg	590	100	2.5	
1,2-Dichloroethane	ND		ug/kg	150	38.	2.5	
1,1,1-Trichloroethane	ND		ug/kg	74	25.	2.5	
Bromodichloromethane	ND		ug/kg	74	16.	2.5	
trans-1,3-Dichloropropene	ND		ug/kg	150	40.	2.5	
cis-1,3-Dichloropropene	ND		ug/kg	74	23.	2.5	
Bromoform	ND		ug/kg	590	36.	2.5	
1,1,2,2-Tetrachloroethane	ND		ug/kg	74	25.	2.5	
Benzene	ND		ug/kg	74	25.	2.5	
Toluene	ND		ug/kg	150	81.	2.5	_
Ethylbenzene	ND		ug/kg	150	21.	2.5	
Chloromethane	ND		ug/kg	590	140	2.5	
Bromomethane	ND		ug/kg	300	86.	2.5	
Vinyl chloride	ND		ug/kg	150	50.	2.5	_
Chloroethane	ND		ug/kg	300	67.	2.5	
1,1-Dichloroethene	ND		ug/kg	150	35.	2.5	
trans-1,2-Dichloroethene	ND		ug/kg	220	20.	2.5	
Trichloroethene	ND		ug/kg	74	20.	2.5	
1,2-Dichlorobenzene	ND		ug/kg	300	21.	2.5	
							_

Project Name: 641 WEST AVE (NIAGARA COUNTY) Lab Number: L1917600

Project Number: Not Specified

SAMPLE RESULTS

Date Collected: 04/29/19 10:20

Lab ID: L1917600-03 D
Client ID: EB-3

Date Received: 04/29/19

Report Date:

Sample Location: 641 WEST AVE., LOCKPORT, NY

Field Prep: Not Specified

05/10/19

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 High	- Westborough Lab					
1,3-Dichlorobenzene	ND		ug/kg	300	22.	2.5
1,4-Dichlorobenzene	ND		ug/kg	300	25.	2.5
Methyl tert butyl ether	ND		ug/kg	300	30.	2.5
p/m-Xylene	ND		ug/kg	300	83.	2.5
o-Xylene	ND		ug/kg	150	43.	2.5
cis-1,2-Dichloroethene	ND		ug/kg	150	26.	2.5
Styrene	ND		ug/kg	150	29.	2.5
Dichlorodifluoromethane	ND		ug/kg	1500	140	2.5
Acetone	ND		ug/kg	1500	710	2.5
Carbon disulfide	ND		ug/kg	1500	680	2.5
2-Butanone	ND		ug/kg	1500	330	2.5
4-Methyl-2-pentanone	ND		ug/kg	1500	190	2.5
2-Hexanone	ND		ug/kg	1500	180	2.5
1,2-Dibromoethane	ND		ug/kg	150	41.	2.5
n-Butylbenzene	600		ug/kg	150	25.	2.5
sec-Butylbenzene	1100		ug/kg	150	22.	2.5
tert-Butylbenzene	58	J	ug/kg	300	18.	2.5
1,2-Dibromo-3-chloropropane	ND		ug/kg	440	150	2.5
Isopropylbenzene	2000		ug/kg	150	16.	2.5
p-Isopropyltoluene	45	J	ug/kg	150	16.	2.5
Naphthalene	ND		ug/kg	590	96.	2.5
n-Propylbenzene	6600		ug/kg	150	25.	2.5
1,2,4-Trichlorobenzene	ND		ug/kg	300	40.	2.5
1,3,5-Trimethylbenzene	ND		ug/kg	300	29.	2.5
1,2,4-Trimethylbenzene	ND		ug/kg	300	50.	2.5
Methyl Acetate	ND		ug/kg	590	140	2.5
Cyclohexane	1100	J	ug/kg	1500	81.	2.5
Freon-113	ND		ug/kg	590	100	2.5
Methyl cyclohexane	1200		ug/kg	590	90.	2.5

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	101	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	122	70-130	
Dibromofluoromethane	100	70-130	

L1917600

05/10/19

Project Name: 641 WEST AVE (NIAGARA COUNTY)

641 WEST AVE., LOCKPORT, NY

D

L1917600-04

EB-4

Project Number: Not Specified

SAMPLE RESULTS

Date Collected: 04/29/19 10:40

Date Received: 04/29/19

Lab Number:

Report Date:

Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Soil Analytical Method: 1,8260C Analytical Date: 05/06/19 22:52

Analyst: JC 91% Percent Solids:

1,1-Dichloroethane	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1,1-Dichloroethane	Volatile Organics by EPA 5035 H	High - Westborough Lab					
Chloroform ND ug/kg 720 68. 10 Carbon tetrachloride ND ug/kg 480 110 10 1,2-Dichloropropane ND ug/kg 480 60. 10 Dibromochloromethane ND ug/kg 480 68. 10 1,1,2-Trichloroethane ND ug/kg 480 130 10 Tetrachloroethane ND ug/kg 240 95. 10 Chlorobenzene ND ug/kg 240 61. 10 Trichlorofluoromethane ND ug/kg 1900 340 10 1,2-Dichloroethane ND ug/kg 480 120 10 1,1,1-Trichloroethane ND ug/kg 240 81. 10 Bromodichloromethane ND ug/kg 240 81. 10 trans-1,3-Dichloropropene ND ug/kg 480 130 10 trans-1,3-Dichloropropene ND ug/kg 1900 </td <td>Methylene chloride</td> <td>ND</td> <td></td> <td>ug/kg</td> <td>2400</td> <td>1100</td> <td>10</td>	Methylene chloride	ND		ug/kg	2400	1100	10
Carbon tetrachloride ND ug/kg 480 110 10 1,2-Dichloropropane ND ug/kg 480 60. 10 Dibromochloromethane ND ug/kg 480 68. 10 1,1,2-Trichloroethane ND ug/kg 480 130 10 Tetrachloroethane ND ug/kg 240 95. 10 Chlorobenzene ND ug/kg 240 61. 10 Chloroberthane ND ug/kg 1900 340 10 1,2-Dichloroethane ND ug/kg 480 120 10 1,1,1-Trichloroethane ND ug/kg 240 81. 10 Bromodichloromethane ND ug/kg 240 81. 10 Bromodichloromethane ND ug/kg 480 130 10 trans-1,3-Dichloropropene ND ug/kg 480 130 10 dis-1,3-Dichloropropene ND ug/kg 1900 </td <td>1,1-Dichloroethane</td> <td>ND</td> <td></td> <td>ug/kg</td> <td>480</td> <td>70.</td> <td>10</td>	1,1-Dichloroethane	ND		ug/kg	480	70.	10
1,2-Dichloropropane ND ug/kg 480 60. 10 Dibromochloromethane ND ug/kg 480 68. 10 1,1,2-Trichloroethane ND ug/kg 480 130 10 Tetrachloroethane ND ug/kg 240 95. 10 Chlorobenzene ND ug/kg 240 61. 10 Trichlorofluoromethane ND ug/kg 1900 340 10 1,2-Dichloroethane ND ug/kg 480 120 10 1,1,1-Trichloroethane ND ug/kg 240 81. 10 Bromodichloromethane ND ug/kg 240 81. 10 Bromodichloromethane ND ug/kg 240 53. 10 trans-1,3-Dichloropropene ND ug/kg 480 130 10 cis-1,3-Dichloropropene ND ug/kg 1900 120 10 Bromoform ND ug/kg 240	Chloroform	ND		ug/kg	720	68.	10
Dibromochloromethane ND	Carbon tetrachloride	ND		ug/kg	480	110	10
1,1,2-Trichloroethane ND ug/kg 480 130 10 Tetrachloroethene ND ug/kg 240 95. 10 Chlorobenzene ND ug/kg 240 61. 10 Trichloroftuoromethane ND ug/kg 1900 340 10 1,2-Dichloroethane ND ug/kg 480 120 10 1,1,1-Trichloroethane ND ug/kg 240 81. 10 Bromodichloromethane ND ug/kg 240 81. 10 Bromoformenthane ND ug/kg 480 130 10 trans-1,3-Dichloropropene ND ug/kg 480 130 10 Bromoform ND ug/kg 240 76. 10 Bromoform ND ug/kg 1900 120 10 1,1,2,2-Tetrachloroethane ND ug/kg 240 80. 10 Toluene 310 J ug/kg 480	1,2-Dichloropropane	ND		ug/kg	480	60.	10
Tetrachloroethene ND ug/kg 240 95. 10 Chlorobenzene ND ug/kg 240 61. 10 Trichlorofluoromethane ND ug/kg 1900 340 10 1,2-Dichloroethane ND ug/kg 480 120 10 1,1,1-Trichloroethane ND ug/kg 240 81. 10 Bromodichloromethane ND ug/kg 240 53. 10 trans-1,3-Dichloropropene ND ug/kg 480 130 10 cis-1,3-Dichloropropene ND ug/kg 240 76. 10 Bromoform ND ug/kg 1900 120 10 1,1,2,2-Tetrachloroethane ND ug/kg 240 80. 10 Benzene ND ug/kg 240 80. 10 Toluene 310 J ug/kg 480 68. 10 Chloromethane ND ug/kg 480	Dibromochloromethane	ND		ug/kg	480	68.	10
Chlorobenzene ND	1,1,2-Trichloroethane	ND		ug/kg	480	130	10
Trichlorofluoromethane	Tetrachloroethene	ND		ug/kg	240	95.	10
1,2-Dichloroethane ND ug/kg 480 120 10 1,1,1-Trichloroethane ND ug/kg 240 81. 10 Bromodichloromethane ND ug/kg 240 53. 10 trans-1,3-Dichloropropene ND ug/kg 480 130 10 cis-1,3-Dichloropropene ND ug/kg 240 76. 10 Bromoform ND ug/kg 1900 120 10 Bromoform ND ug/kg 1900 120 10 1,1,2,2-Tetrachloroethane ND ug/kg 240 80. 10 Benzene ND ug/kg 240 80. 10 Toluene 310 J ug/kg 480 260 10 Ethylbenzene 13000 ug/kg 480 68. 10 Chloromethane ND ug/kg 1900 450 10 Bromomethane ND ug/kg 480 160	Chlorobenzene	ND		ug/kg	240	61.	10
1,1,1-Trichloroethane	Trichlorofluoromethane	ND		ug/kg	1900	340	10
Bromodichloromethane ND ug/kg 240 53. 10 trans-1,3-Dichloropropene ND ug/kg 480 130 10 cis-1,3-Dichloropropene ND ug/kg 240 76. 10 Bromoform ND ug/kg 1900 120 10 1,1,2,2-Tetrachloroethane ND ug/kg 240 80. 10 Benzene ND ug/kg 240 80. 10 Toluene 310 J ug/kg 480 260 10 Ethylbenzene 13000 ug/kg 480 68. 10 Chloromethane ND ug/kg 1900 450 10 Bromomethane ND ug/kg 960 280 10 Vinyl chloride ND ug/kg 480 160 10 Chloroethane ND ug/kg 480 160 10 1,1-Dichloroethene ND ug/kg 480 110	1,2-Dichloroethane	ND		ug/kg	480	120	10
trans-1,3-Dichloropropene ND ug/kg 480 130 10 cis-1,3-Dichloropropene ND ug/kg 240 76. 10 Bromoform ND ug/kg 1900 120 10 1,1,2,2-Tetrachloroethane ND ug/kg 240 80. 10 Benzene ND ug/kg 240 80. 10 Toluene 310 J ug/kg 480 260 10 Ethylbenzene 13000 ug/kg 480 260 10 Ethylbenzene ND ug/kg 480 68. 10 Chloromethane ND ug/kg 1900 450 10 Bromomethane ND ug/kg 960 280 10 Bromomethane ND ug/kg 960 280 10 Chlorotethane ND ug/kg 480 160 10 Chloroethane ND ug/kg 960 220 10 1,1-Dichloroethene ND ug/kg 480 110 10 Trichloroethene ND ug/kg 720 66. 10	1,1,1-Trichloroethane	ND		ug/kg	240	81.	10
cis-1,3-Dichloropropene ND ug/kg 240 76. 10 Bromoform ND ug/kg 1900 120 10 1,1,2,2-Tetrachloroethane ND ug/kg 240 80. 10 Benzene ND ug/kg 240 80. 10 Toluene 310 J ug/kg 480 260 10 Ethylbenzene 13000 ug/kg 480 68. 10 Chloromethane ND ug/kg 1900 450 10 Bromomethane ND ug/kg 960 280 10 Vinyl chloride ND ug/kg 480 160 10 Chloroethane ND ug/kg 960 220 10 1,1-Dichloroethene ND ug/kg 480 110 10 trans-1,2-Dichloroethene ND ug/kg 720 66. 10 Trichloroethene ND ug/kg 240 66.	Bromodichloromethane	ND		ug/kg	240	53.	10
Bromoform ND ug/kg 1900 120 10 1,1,2,2-Tetrachloroethane ND ug/kg 240 80. 10 Benzene ND ug/kg 240 80. 10 Toluene 310 J ug/kg 480 260 10 Ethylbenzene 13000 ug/kg 480 68. 10 Chloromethane ND ug/kg 1900 450 10 Bromomethane ND ug/kg 960 280 10 Vinyl chloride ND ug/kg 480 160 10 Chloroethane ND ug/kg 960 220 10 1,1-Dichloroethene ND ug/kg 480 110 10 trans-1,2-Dichloroethene ND ug/kg 720 66. 10 Trichloroethene ND ug/kg 240 66. 10	trans-1,3-Dichloropropene	ND		ug/kg	480	130	10
1,1,2,2-Tetrachloroethane ND ug/kg 240 80. 10 Benzene ND ug/kg 240 80. 10 Toluene 310 J ug/kg 480 260 10 Ethylbenzene 13000 ug/kg 480 68. 10 Chloromethane ND ug/kg 1900 450 10 Bromomethane ND ug/kg 960 280 10 Vinyl chloride ND ug/kg 480 160 10 Chloroethane ND ug/kg 960 220 10 1,1-Dichloroethene ND ug/kg 480 110 10 trans-1,2-Dichloroethene ND ug/kg 720 66. 10 Trichloroethene ND ug/kg 240 66. 10	cis-1,3-Dichloropropene	ND		ug/kg	240	76.	10
Benzene ND ug/kg 240 80. 10 Toluene 310 J ug/kg 480 260 10 Ethylbenzene 13000 ug/kg 480 68. 10 Chloromethane ND ug/kg 1900 450 10 Bromomethane ND ug/kg 960 280 10 Vinyl chloride ND ug/kg 480 160 10 Chloroethane ND ug/kg 960 220 10 1,1-Dichloroethene ND ug/kg 480 110 10 trans-1,2-Dichloroethene ND ug/kg 720 66. 10 Trichloroethene ND ug/kg 240 66. 10	Bromoform	ND		ug/kg	1900	120	10
Toluene 310 J ug/kg 480 260 10 Ethylbenzene 13000 ug/kg 480 68. 10 Chloromethane ND ug/kg 1900 450 10 Bromomethane ND ug/kg 960 280 10 Vinyl chloride ND ug/kg 480 160 10 Chloroethane ND ug/kg 960 220 10 1,1-Dichloroethene ND ug/kg 480 110 10 trans-1,2-Dichloroethene ND ug/kg 720 66. 10 Trichloroethene ND ug/kg 240 66. 10	1,1,2,2-Tetrachloroethane	ND		ug/kg	240	80.	10
Ethylbenzene 13000 ug/kg 480 68. 10 Chloromethane ND ug/kg 1900 450 10 Bromomethane ND ug/kg 960 280 10 Vinyl chloride ND ug/kg 480 160 10 Chloroethane ND ug/kg 960 220 10 1,1-Dichloroethene ND ug/kg 480 110 10 trans-1,2-Dichloroethene ND ug/kg 720 66. 10 Trichloroethene ND ug/kg 240 66. 10	Benzene	ND		ug/kg	240	80.	10
Chloromethane ND ug/kg 1900 450 10 Bromomethane ND ug/kg 960 280 10 Vinyl chloride ND ug/kg 480 160 10 Chloroethane ND ug/kg 960 220 10 1,1-Dichloroethene ND ug/kg 480 110 10 trans-1,2-Dichloroethene ND ug/kg 720 66. 10 Trichloroethene ND ug/kg 240 66. 10	Toluene	310	J	ug/kg	480	260	10
Bromomethane ND ug/kg 960 280 10 Vinyl chloride ND ug/kg 480 160 10 Chloroethane ND ug/kg 960 220 10 1,1-Dichloroethene ND ug/kg 480 110 10 trans-1,2-Dichloroethene ND ug/kg 720 66. 10 Trichloroethene ND ug/kg 240 66. 10	Ethylbenzene	13000		ug/kg	480	68.	10
Vinyl chloride ND ug/kg 480 160 10 Chloroethane ND ug/kg 960 220 10 1,1-Dichloroethene ND ug/kg 480 110 10 trans-1,2-Dichloroethene ND ug/kg 720 66. 10 Trichloroethene ND ug/kg 240 66. 10	Chloromethane	ND		ug/kg	1900	450	10
Chloroethane ND ug/kg 960 220 10 1,1-Dichloroethene ND ug/kg 480 110 10 trans-1,2-Dichloroethene ND ug/kg 720 66. 10 Trichloroethene ND ug/kg 240 66. 10	Bromomethane	ND		ug/kg	960	280	10
1,1-Dichloroethene ND ug/kg 480 110 10 trans-1,2-Dichloroethene ND ug/kg 720 66. 10 Trichloroethene ND ug/kg 240 66. 10	Vinyl chloride	ND		ug/kg	480	160	10
trans-1,2-Dichloroethene ND ug/kg 720 66. 10 Trichloroethene ND ug/kg 240 66. 10	Chloroethane	ND		ug/kg	960	220	10
Trichloroethene ND ug/kg 240 66. 10	1,1-Dichloroethene	ND		ug/kg	480	110	10
-5 5	trans-1,2-Dichloroethene	ND		ug/kg	720	66.	10
1,2-Dichlorobenzene ND ug/kg 960 70. 10	Trichloroethene	ND		ug/kg	240	66.	10
	1,2-Dichlorobenzene	ND		ug/kg	960	70.	10

05/10/19

Dilution Factor

Project Name: 641 WEST AVE (NIAGARA COUNTY) Lab Number: L1917600

Result

Project Number: Not Specified

SAMPLE RESULTS

Date Collected: 04/29/19 10:40

MDL

Report Date:

RL

Lab ID: L1917600-04 D

EB-4 Date Received: 04/29/19
641 WEST AVE., LOCKPORT, NY Field Prep: Not Specified

Units

Qualifier

Sample Depth:

Client ID:

Parameter

Sample Location:

rarameter	Nesuit	Qualifier	Ullita	INL.	MIDL	Dilution i actor	
Volatile Organics by EPA 5035	High - Westborough Lab						
1,3-Dichlorobenzene	ND		ug/kg	960	71.	10	
1,4-Dichlorobenzene	ND		ug/kg	960	82.	10	
Methyl tert butyl ether	ND		ug/kg	960	97.	10	
p/m-Xylene	26000		ug/kg	960	270	10	
o-Xylene	1200		ug/kg	480	140	10	
cis-1,2-Dichloroethene	ND		ug/kg	480	84.	10	
Styrene	ND		ug/kg	480	95.	10	
Dichlorodifluoromethane	ND		ug/kg	4800	440	10	
Acetone	ND		ug/kg	4800	2300	10	
Carbon disulfide	ND		ug/kg	4800	2200	10	
2-Butanone	ND		ug/kg	4800	1100	10	
4-Methyl-2-pentanone	ND		ug/kg	4800	620	10	
2-Hexanone	ND		ug/kg	4800	570	10	
1,2-Dibromoethane	ND		ug/kg	480	130	10	
n-Butylbenzene	1300		ug/kg	480	81.	10	
sec-Butylbenzene	770		ug/kg	480	70.	10	
tert-Butylbenzene	ND		ug/kg	960	57.	10	
1,2-Dibromo-3-chloropropane	ND		ug/kg	1400	480	10	
Isopropylbenzene	3500		ug/kg	480	53.	10	
p-Isopropyltoluene	1400		ug/kg	480	53.	10	
Naphthalene	3300		ug/kg	1900	310	10	
n-Propylbenzene	4600		ug/kg	480	82.	10	
1,2,4-Trichlorobenzene	ND		ug/kg	960	130	10	
1,3,5-Trimethylbenzene	13000		ug/kg	960	93.	10	
1,2,4-Trimethylbenzene	33000		ug/kg	960	160	10	
Methyl Acetate	ND		ug/kg	1900	460	10	
Cyclohexane	36000		ug/kg	4800	260	10	
Freon-113	ND		ug/kg	1900	330	10	
Methyl cyclohexane	120000		ug/kg	1900	290	10	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	108	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	105	70-130	
Dibromofluoromethane	96	70-130	

L1917600

05/10/19

Project Name: 641 WEST AVE (NIAGARA COUNTY)

Project Number: Not Specified

SAMPLE RESULTS

Date Collected: 04/29/19 11:05

.....

Lab Number:

Report Date:

Date Received: 04/29/19
Field Prep: Not Specified

Sample Location: 641 WEST AVE., LOCKPORT, NY

EB-5

L1917600-05

Sample Depth:

Lab ID:

Client ID:

Matrix: Soil
Analytical Method: 1,8260C
Analytical Date: 05/07/19 00:36

Analyst: JC Percent Solids: 80%

		Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 Low - \	Westborough Lab					
Methylene chloride	ND		ug/kg	5.4	2.5	1
1,1-Dichloroethane	ND		ug/kg	1.1	0.16	1
Chloroform	ND		ug/kg	1.6	0.15	1
Carbon tetrachloride	ND		ug/kg	1.1	0.25	1
1,2-Dichloropropane	ND		ug/kg	1.1	0.14	1
Dibromochloromethane	ND		ug/kg	1.1	0.15	1
1,1,2-Trichloroethane	ND		ug/kg	1.1	0.29	1
Tetrachloroethene	ND		ug/kg	0.54	0.21	1
Chlorobenzene	ND		ug/kg	0.54	0.14	1
Trichlorofluoromethane	ND		ug/kg	4.3	0.75	1
1,2-Dichloroethane	ND		ug/kg	1.1	0.28	1
1,1,1-Trichloroethane	ND		ug/kg	0.54	0.18	1
Bromodichloromethane	ND		ug/kg	0.54	0.12	1
trans-1,3-Dichloropropene	ND		ug/kg	1.1	0.30	1
cis-1,3-Dichloropropene	ND		ug/kg	0.54	0.17	1
Bromoform	ND		ug/kg	4.3	0.26	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.54	0.18	1
Benzene	ND		ug/kg	0.54	0.18	1
Toluene	ND		ug/kg	1.1	0.59	1
Ethylbenzene	ND		ug/kg	1.1	0.15	1
Chloromethane	ND		ug/kg	4.3	1.0	1
Bromomethane	ND		ug/kg	2.2	0.63	1
Vinyl chloride	ND		ug/kg	1.1	0.36	1
Chloroethane	ND		ug/kg	2.2	0.49	1
1,1-Dichloroethene	ND		ug/kg	1.1	0.26	1
trans-1,2-Dichloroethene	ND		ug/kg	1.6	0.15	1
Trichloroethene	ND		ug/kg	0.54	0.15	1
1,2-Dichlorobenzene	ND		ug/kg	2.2	0.16	1

Project Name: 641 WEST AVE (NIAGARA COUNTY) Lab Number: L1917600

Project Number: Not Specified Report Date: 05/10/19

SAMPLE RESULTS

Lab ID: Date Collected: 04/29/19 11:05

Client ID: EB-5 Date Received: 04/29/19 Sample Location: 641 WEST AVE., LOCKPORT, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 Lo	w - Westborough Lab					
1,3-Dichlorobenzene	ND		ug/kg	2.2	0.16	1
1,4-Dichlorobenzene	ND		ug/kg	2.2	0.18	1
Methyl tert butyl ether	ND		ug/kg	2.2	0.22	1
p/m-Xylene	ND		ug/kg	2.2	0.60	1
o-Xylene	ND		ug/kg	1.1	0.31	1
cis-1,2-Dichloroethene	ND		ug/kg	1.1	0.19	1
Styrene	ND		ug/kg	1.1	0.21	1
Dichlorodifluoromethane	ND		ug/kg	11	0.99	1
Acetone	9.4	J	ug/kg	11	5.2	1
Carbon disulfide	ND		ug/kg	11	4.9	1
2-Butanone	ND		ug/kg	11	2.4	1
4-Methyl-2-pentanone	ND		ug/kg	11	1.4	1
2-Hexanone	ND		ug/kg	11	1.3	1
1,2-Dibromoethane	ND		ug/kg	1.1	0.30	1
n-Butylbenzene	ND		ug/kg	1.1	0.18	1
sec-Butylbenzene	ND		ug/kg	1.1	0.16	1
tert-Butylbenzene	ND		ug/kg	2.2	0.13	1
1,2-Dibromo-3-chloropropane	ND		ug/kg	3.2	1.1	1
Isopropylbenzene	ND		ug/kg	1.1	0.12	1
p-Isopropyltoluene	ND		ug/kg	1.1	0.12	1
Naphthalene	ND		ug/kg	4.3	0.70	1
n-Propylbenzene	ND		ug/kg	1.1	0.18	1
1,2,4-Trichlorobenzene	ND		ug/kg	2.2	0.29	1
1,3,5-Trimethylbenzene	ND		ug/kg	2.2	0.21	1
1,2,4-Trimethylbenzene	ND		ug/kg	2.2	0.36	1
Methyl Acetate	ND		ug/kg	4.3	1.0	1
Cyclohexane	ND		ug/kg	11	0.59	1
Freon-113	ND		ug/kg	4.3	0.75	1
Methyl cyclohexane	ND		ug/kg	4.3	0.65	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	108	70-130	
Toluene-d8	93	70-130	
4-Bromofluorobenzene	99	70-130	
Dibromofluoromethane	105	70-130	

L1917600

05/10/19

Project Name: 641 WEST AVE (NIAGARA COUNTY)

Project Number: Not Specified

SAMPLE RESULTS

04/29/19 11:40

Lab Number:

Report Date:

Lab ID: L1917600-06 Date Collected:

Client ID: Date Received: 04/29/19 EB-7

Field Prep: Sample Location: 641 WEST AVE., LOCKPORT, NY Not Specified

Sample Depth:

Matrix: Soil Analytical Method: 1,8260C Analytical Date: 05/06/19 23:18

Analyst: JC 89% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by EPA 5035 High	- Westborough Lab						
Methylene chloride	ND		ug/kg	260	120	1	
1,1-Dichloroethane	ND		ug/kg	51	7.5	1	
Chloroform	ND		ug/kg	77	7.2	1	
Carbon tetrachloride	ND		ug/kg	51	12.	1	
1,2-Dichloropropane	ND		ug/kg	51	6.4	1	
Dibromochloromethane	ND		ug/kg	51	7.2	1	
1,1,2-Trichloroethane	ND		ug/kg	51	14.	1	
Tetrachloroethene	ND		ug/kg	26	10.	1	
Chlorobenzene	ND		ug/kg	26	6.5	1	
Trichlorofluoromethane	ND		ug/kg	200	36.	1	
1,2-Dichloroethane	ND		ug/kg	51	13.	1	
1,1,1-Trichloroethane	ND		ug/kg	26	8.6	1	
Bromodichloromethane	ND		ug/kg	26	5.6	1	
trans-1,3-Dichloropropene	ND		ug/kg	51	14.	1	
cis-1,3-Dichloropropene	ND		ug/kg	26	8.1	1	
Bromoform	ND		ug/kg	200	13.	1	
1,1,2,2-Tetrachloroethane	ND		ug/kg	26	8.5	1	
Benzene	ND		ug/kg	26	8.5	1	
Toluene	ND		ug/kg	51	28.	1	
Ethylbenzene	ND		ug/kg	51	7.2	1	
Chloromethane	ND		ug/kg	200	48.	1	
Bromomethane	ND		ug/kg	100	30.	1	
Vinyl chloride	ND		ug/kg	51	17.	1	
Chloroethane	ND		ug/kg	100	23.	1	
1,1-Dichloroethene	ND		ug/kg	51	12.	1	
trans-1,2-Dichloroethene	ND		ug/kg	77	7.0	1	
Trichloroethene	ND		ug/kg	26	7.0	1	
1,2-Dichlorobenzene	ND		ug/kg	100	7.4	1	

Project Name: 641 WEST AVE (NIAGARA COUNTY) Lab Number: L1917600

Project Number: Not Specified Report Date: 05/10/19

SAMPLE RESULTS

Lab ID: L1917600-06 Date Collected: 04/29/19 11:40

Client ID: EB-7 Date Received: 04/29/19 Sample Location: 641 WEST AVE., LOCKPORT, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 High	- Westborough Lab					
1,3-Dichlorobenzene	ND		ug/kg	100	7.6	1
1,4-Dichlorobenzene	ND		ug/kg	100	8.8	1
Methyl tert butyl ether	ND		ug/kg	100	10.	1
p/m-Xylene	ND		ug/kg	100	29.	1
o-Xylene	ND		ug/kg	51	15.	1
cis-1,2-Dichloroethene	ND		ug/kg	51	9.0	1
Styrene	ND		ug/kg	51	10.	1
Dichlorodifluoromethane	ND		ug/kg	510	47.	1
Acetone	ND		ug/kg	510	250	1
Carbon disulfide	ND		ug/kg	510	230	1
2-Butanone	ND		ug/kg	510	110	1
4-Methyl-2-pentanone	ND		ug/kg	510	66.	1
2-Hexanone	ND		ug/kg	510	61.	1
1,2-Dibromoethane	ND		ug/kg	51	14.	1
n-Butylbenzene	ND		ug/kg	51	8.6	1
sec-Butylbenzene	290		ug/kg	51	7.5	1
tert-Butylbenzene	19	J	ug/kg	100	6.1	1
1,2-Dibromo-3-chloropropane	ND		ug/kg	150	51.	1
Isopropylbenzene	18	J	ug/kg	51	5.6	1
p-Isopropyltoluene	ND		ug/kg	51	5.6	1
Naphthalene	ND		ug/kg	200	33.	1
n-Propylbenzene	ND		ug/kg	51	8.8	1
1,2,4-Trichlorobenzene	ND		ug/kg	100	14.	1
1,3,5-Trimethylbenzene	ND		ug/kg	100	9.9	1
1,2,4-Trimethylbenzene	ND		ug/kg	100	17.	1
Methyl Acetate	ND		ug/kg	200	49.	1
Cyclohexane	ND		ug/kg	510	28.	1
Freon-113	ND		ug/kg	200	36.	1
Methyl cyclohexane	96	J	ug/kg	200	31.	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	100	70-130	
Toluene-d8	95	70-130	
4-Bromofluorobenzene	130	70-130	
Dibromofluoromethane	101	70-130	

L1917600

05/10/19

Lab Number:

Report Date:

Project Name: 641 WEST AVE (NIAGARA COUNTY)

Project Number: Not Specified

SAMPLE RESULTS

L1917600-07 Date Collected: 04/29/19 12:30

Client ID: EB-9 Date Received: 04/29/19
Sample Location: 641 WEST AVE., LOCKPORT, NY Field Prep: Not Specified

Sample Depth:

Lab ID:

Matrix: Soil
Analytical Method: 1,8260C
Analytical Date: 05/06/19 23:44

Analyst: JC Percent Solids: 91%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 High	- Westborough Lab					
Methylene chloride	ND		ug/kg	230	110	1
1,1-Dichloroethane	ND		ug/kg	47	6.8	1
Chloroform	ND		ug/kg	70	6.6	1
Carbon tetrachloride	ND		ug/kg	47	11.	1
1,2-Dichloropropane	ND		ug/kg	47	5.8	1
Dibromochloromethane	ND		ug/kg	47	6.6	1
1,1,2-Trichloroethane	ND		ug/kg	47	12.	1
Tetrachloroethene	ND		ug/kg	23	9.2	1
Chlorobenzene	ND		ug/kg	23	5.9	1
Trichlorofluoromethane	ND		ug/kg	190	32.	1
1,2-Dichloroethane	ND		ug/kg	47	12.	1
1,1,1-Trichloroethane	ND		ug/kg	23	7.8	1
Bromodichloromethane	ND		ug/kg	23	5.1	1
trans-1,3-Dichloropropene	ND		ug/kg	47	13.	1
cis-1,3-Dichloropropene	ND		ug/kg	23	7.4	1
Bromoform	ND		ug/kg	190	12.	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	23	7.8	1
Benzene	ND		ug/kg	23	7.8	1
Toluene	ND		ug/kg	47	25.	1
Ethylbenzene	ND		ug/kg	47	6.6	1
Chloromethane	ND		ug/kg	190	44.	1
Bromomethane	ND		ug/kg	94	27.	1
Vinyl chloride	ND		ug/kg	47	16.	1
Chloroethane	ND		ug/kg	94	21.	1
1,1-Dichloroethene	ND		ug/kg	47	11.	1
trans-1,2-Dichloroethene	ND		ug/kg	70	6.4	1
Trichloroethene	ND		ug/kg	23	6.4	1
1,2-Dichlorobenzene	ND		ug/kg	94	6.7	1

Project Name: 641 WEST AVE (NIAGARA COUNTY) Lab Number: L1917600

Project Number: Not Specified Report Date: 05/10/19

SAMPLE RESULTS

Lab ID: L1917600-07 Date Collected: 04/29/19 12:30

Client ID: EB-9 Date Received: 04/29/19 Sample Location: 641 WEST AVE., LOCKPORT, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 High	- Westborough Lab					
1,3-Dichlorobenzene	ND		ug/kg	94	6.9	1
1,4-Dichlorobenzene	ND		ug/kg	94	8.0	1
Methyl tert butyl ether	ND		ug/kg	94	9.4	1
p/m-Xylene	ND		ug/kg	94	26.	1
o-Xylene	ND		ug/kg	47	14.	1
cis-1,2-Dichloroethene	ND		ug/kg	47	8.2	1
Styrene	ND		ug/kg	47	9.2	1
Dichlorodifluoromethane	ND		ug/kg	470	43.	1
Acetone	ND		ug/kg	470	220	1
Carbon disulfide	ND		ug/kg	470	210	1
2-Butanone	ND		ug/kg	470	100	1
4-Methyl-2-pentanone	ND		ug/kg	470	60.	1
2-Hexanone	ND		ug/kg	470	55.	1
1,2-Dibromoethane	ND		ug/kg	47	13.	1
n-Butylbenzene	ND		ug/kg	47	7.8	1
sec-Butylbenzene	ND		ug/kg	47	6.8	1
tert-Butylbenzene	ND		ug/kg	94	5.5	1
1,2-Dibromo-3-chloropropane	ND		ug/kg	140	47.	1
Isopropylbenzene	ND		ug/kg	47	5.1	1
p-Isopropyltoluene	ND		ug/kg	47	5.1	1
Naphthalene	ND		ug/kg	190	30.	1
n-Propylbenzene	ND		ug/kg	47	8.0	1
1,2,4-Trichlorobenzene	ND		ug/kg	94	13.	1
1,3,5-Trimethylbenzene	ND		ug/kg	94	9.0	1
1,2,4-Trimethylbenzene	ND		ug/kg	94	16.	1
Methyl Acetate	ND		ug/kg	190	44.	1
Cyclohexane	ND		ug/kg	470	25.	1
Freon-113	ND		ug/kg	190	32.	1
Methyl cyclohexane	ND		ug/kg	190	28.	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	101	70-130	
Toluene-d8	93	70-130	
4-Bromofluorobenzene	97	70-130	
Dibromofluoromethane	103	70-130	

Project Name: 641 WEST AVE (NIAGARA COUNTY) Lab Number: L1917600

Project Number: Not Specified Report Date: 05/10/19

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 05/06/19 20:16

Analyst: AD

arameter	Result	Qualifier	Units	RL		MDL
platile Organics by EPA 503	5 Low - Westbord	ough Lab for	sample(s):	05	Batch:	WG1234352-5
Methylene chloride	ND		ug/kg	5.0		2.3
1,1-Dichloroethane	ND		ug/kg	1.0		0.14
Chloroform	ND		ug/kg	1.5		0.14
Carbon tetrachloride	ND		ug/kg	1.0		0.23
1,2-Dichloropropane	ND		ug/kg	1.0		0.12
Dibromochloromethane	ND		ug/kg	1.0		0.14
1,1,2-Trichloroethane	ND		ug/kg	1.0		0.27
Tetrachloroethene	ND		ug/kg	0.50		0.20
Chlorobenzene	ND		ug/kg	0.50		0.13
Trichlorofluoromethane	ND		ug/kg	4.0		0.70
1,2-Dichloroethane	ND		ug/kg	1.0		0.26
1,1,1-Trichloroethane	ND		ug/kg	0.50		0.17
Bromodichloromethane	ND		ug/kg	0.50		0.11
trans-1,3-Dichloropropene	ND		ug/kg	1.0		0.27
cis-1,3-Dichloropropene	ND		ug/kg	0.50		0.16
Bromoform	ND		ug/kg	4.0		0.25
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.50		0.17
Benzene	ND		ug/kg	0.50		0.17
Toluene	ND		ug/kg	1.0		0.54
Ethylbenzene	ND		ug/kg	1.0		0.14
Chloromethane	ND		ug/kg	4.0		0.93
Bromomethane	ND		ug/kg	2.0		0.58
Vinyl chloride	ND		ug/kg	1.0		0.34
Chloroethane	ND		ug/kg	2.0		0.45
1,1-Dichloroethene	ND		ug/kg	1.0		0.24
trans-1,2-Dichloroethene	ND		ug/kg	1.5		0.14
Trichloroethene	ND		ug/kg	0.50		0.14
1,2-Dichlorobenzene	ND		ug/kg	2.0		0.14
1,3-Dichlorobenzene	ND		ug/kg	2.0		0.15

Project Name: 641 WEST AVE (NIAGARA COUNTY) Lab Number: L1917600

Project Number: Not Specified Report Date: 05/10/19

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 05/06/19 20:16

Analyst: AD

A-Dichlorobenzene ND	Parameter	Result	Qualifier	Units	RL		MDL
Methyl tert butyl ether ND ug/kg 2.0 0.20 p/m-Xylene ND ug/kg 2.0 0.56 o-Xylene ND ug/kg 1.0 0.29 cis-1,2-Dichloroethene ND ug/kg 1.0 0.18 Styrene ND ug/kg 1.0 0.20 Dichlorodifluoromethane ND ug/kg 10 0.92 Acetone ND ug/kg 10 4.8 Carbon disulfide ND ug/kg 10 4.8 Carbon disulfide ND ug/kg 10 4.6 2-Butanone ND ug/kg 10 4.6 2-Butanone ND ug/kg 10 1.3 2-Hexanone ND ug/kg 10 1.2 1,2-Dibromoethane ND ug/kg 1.0 0.17 sec-Butylbenzene ND ug/kg 1.0 0.17 sec-Butylbenzene ND ug/kg 2.0 0.12	olatile Organics by EPA 5035	Low - Westboro	ugh Lab fo	r sample(s):	05	Batch:	WG1234352-5
p/m-Xylene ND ug/kg 2.0 0.56 o-Xylene ND ug/kg 1.0 0.29 cis-1,2-Dichloroethene ND ug/kg 1.0 0.18 Styrene ND ug/kg 1.0 0.20 Dichlorodifluoromethane ND ug/kg 10 0.92 Acetone ND ug/kg 10 4.8 Carbon disulfide ND ug/kg 10 4.8 Carbon disulfide ND ug/kg 10 4.6 2-Butanone ND ug/kg 10 2.2 4-Methyl-2-pentanone ND ug/kg 10 1.3 2-Hexanone ND ug/kg 10 1.2 1,2-Dibromoethane ND ug/kg 1.0 0.17 sec-Butylbenzene ND ug/kg 1.0 0.17 sec-Butylbenzene ND ug/kg 1.0 0.15 tert-Butylbenzene ND ug/kg 2.0 0.12 <td>1,4-Dichlorobenzene</td> <td>ND</td> <td></td> <td>ug/kg</td> <td>2.0</td> <td></td> <td>0.17</td>	1,4-Dichlorobenzene	ND		ug/kg	2.0		0.17
o-Xylene ND ug/kg 1.0 0.29 cis-1,2-Dichloroethene ND ug/kg 1.0 0.18 Styrene ND ug/kg 1.0 0.20 Dichlorodifluoromethane ND ug/kg 10 0.92 Acetone ND ug/kg 10 4.8 Carbon disulfide ND ug/kg 10 4.6 2-Butanone ND ug/kg 10 4.6 2-Butanone ND ug/kg 10 1.3 2-Hexanone ND ug/kg 10 1.2 1,2-Dibromoethane ND ug/kg 1.0 0.28 n-Butylbenzene ND ug/kg 1.0 0.17 sec-Butylbenzene ND ug/kg 1.0 0.17 sec-Butylbenzene ND ug/kg 2.0 0.12 1,2-Dibromo-3-chloropropane ND ug/kg 2.0 0.12 1,2-Dibromo-3-chloropropane ND ug/kg 1.0	Methyl tert butyl ether	ND		ug/kg	2.0		0.20
cis-1,2-Dichloroethene ND ug/kg 1.0 0.18 Styrene ND ug/kg 1.0 0.20 Dichlorodifluoromethane ND ug/kg 10 0.92 Acetone ND ug/kg 10 4.8 Carbon disulfide ND ug/kg 10 4.6 2-Butanone ND ug/kg 10 2.2 4-Methyl-2-pentanone ND ug/kg 10 1.3 2-Hexanone ND ug/kg 10 1.2 1,2-Dibromoethane ND ug/kg 1.0 0.28 n-Butylbenzene ND ug/kg 1.0 0.17 sec-Butylbenzene ND ug/kg 1.0 0.17 tert-Butylbenzene ND ug/kg 2.0 0.12 1,2-Dibromo-3-chloropropane ND ug/kg 3.0 1.0 Isopropylbenzene ND ug/kg 1.0 0.11 p-Isopropylouene ND ug/kg 4.0	p/m-Xylene	ND		ug/kg	2.0		0.56
Styrene ND ug/kg 1.0 0.20 Dichlorodifluoromethane ND ug/kg 10 0.92 Acetone ND ug/kg 10 4.8 Carbon disulfide ND ug/kg 10 4.6 2-Butanone ND ug/kg 10 2.2 4-Methyl-2-pentanone ND ug/kg 10 1.3 2-Hexanone ND ug/kg 10 1.2 1,2-Dibromoethane ND ug/kg 1.0 0.28 n-Butylbenzene ND ug/kg 1.0 0.17 sec-Butylbenzene ND ug/kg 1.0 0.15 tert-Butylbenzene ND ug/kg 2.0 0.12 1,2-Dibromo-3-chloropropane ND ug/kg 3.0 1.0 Isopropyllbenzene ND ug/kg 1.0 0.11 p-Isopropyllouene ND ug/kg 1.0 0.11 Naphthalene ND ug/kg 4.0 0.	o-Xylene	ND		ug/kg	1.0		0.29
Dichlorodifluoromethane ND ug/kg 10 0.92 Acetone ND ug/kg 10 4.8 Carbon disulfide ND ug/kg 10 4.6 2-Butanone ND ug/kg 10 2.2 4-Methyl-2-pentanone ND ug/kg 10 1.3 2-Hexanone ND ug/kg 10 0.28 n-Butylbenzene ND ug/kg 1.0 0.17 sec-Butylbenzene ND ug/kg 1.0 0.15 tert-Butylbenzene ND ug/kg 2.0 0.12 1,2-Dibromo-3-chloropropane ND ug/kg 3.0 1.0 lsopropylbenzene ND ug/kg 3.0 1.0 lsopropylbenzene ND ug/kg 1.0 0.11 p-Isopropylbenzene ND ug/kg 1.0 0.11 Naphthalene ND ug/kg 4.0 0.65 n-Propylbenzene ND ug/kg 2.0	cis-1,2-Dichloroethene	ND		ug/kg	1.0		0.18
Acetone ND ug/kg 10 4.8 Carbon disulfide ND ug/kg 10 4.6 2-Butanone ND ug/kg 10 2.2 4-Methyl-2-pentanone ND ug/kg 10 1.3 2-Hexanone ND ug/kg 10 1.2 1,2-Dibromoethane ND ug/kg 1.0 0.28 n-Butylbenzene ND ug/kg 1.0 0.17 sec-Butylbenzene ND ug/kg 1.0 0.15 tert-Butylbenzene ND ug/kg 2.0 0.12 1,2-Dibromo-3-chloropropane ND ug/kg 3.0 1.0 Isopropylbenzene ND ug/kg 1.0 0.11 p-Isopropylbenzene ND ug/kg 1.0 0.11 Naphthalene ND ug/kg 4.0 0.65 n-Propylbenzene ND ug/kg 2.0 0.27 1,3,5-Trimethylbenzene ND ug/kg 2.0	Styrene	ND		ug/kg	1.0		0.20
Carbon disulfide ND ug/kg 10 4.6 2-Butanone ND ug/kg 10 2.2 4-Methyl-2-pentanone ND ug/kg 10 1.3 2-Hexanone ND ug/kg 10 1.2 1,2-Dibromoethane ND ug/kg 1.0 0.28 n-Butylbenzene ND ug/kg 1.0 0.17 sec-Butylbenzene ND ug/kg 1.0 0.15 tert-Butylbenzene ND ug/kg 2.0 0.12 1,2-Dibromo-3-chloropropane ND ug/kg 3.0 1.0 Isopropylbenzene ND ug/kg 1.0 0.11 p-Isopropylboluene ND ug/kg 1.0 0.11 Naphthalene ND ug/kg 4.0 0.65 n-Propylbenzene ND ug/kg 4.0 0.65 n-Propylbenzene ND ug/kg 2.0 0.27 1,3,5-Trimethylbenzene ND ug/kg 2.0 </td <td>Dichlorodifluoromethane</td> <td>ND</td> <td></td> <td>ug/kg</td> <td>10</td> <td></td> <td>0.92</td>	Dichlorodifluoromethane	ND		ug/kg	10		0.92
2-Butanone ND ug/kg 10 2.2 4-Methyl-2-pentanone ND ug/kg 10 1.3 2-Hexanone ND ug/kg 10 1.2 1,2-Dibromoethane ND ug/kg 1.0 0.28 n-Butylbenzene ND ug/kg 1.0 0.17 sec-Butylbenzene ND ug/kg 1.0 0.15 tert-Butylbenzene ND ug/kg 2.0 0.12 1,2-Dibromo-3-chloropropane ND ug/kg 3.0 1.0 Isopropylbenzene ND ug/kg 1.0 0.11 p-Isopropyltoluene ND ug/kg 1.0 0.11 Naphthalene ND ug/kg 4.0 0.65 n-Propylbenzene ND ug/kg 2.0 0.27 1,2,4-Trichlorobenzene ND ug/kg 2.0 0.19 1,2,4-Trimethylbenzene ND ug/kg 2.0 0.33 Methyl Acetate ND ug/kg <t< td=""><td>Acetone</td><td>ND</td><td></td><td>ug/kg</td><td>10</td><td></td><td>4.8</td></t<>	Acetone	ND		ug/kg	10		4.8
4-Methyl-2-pentanone ND ug/kg 10 1.3 2-Hexanone ND ug/kg 10 1.2 1,2-Dibromoethane ND ug/kg 1.0 0.28 n-Butylbenzene ND ug/kg 1.0 0.17 sec-Butylbenzene ND ug/kg 1.0 0.15 tert-Butylbenzene ND ug/kg 2.0 0.12 1,2-Dibromo-3-chloropropane ND ug/kg 3.0 1.0 Isopropylbenzene ND ug/kg 1.0 0.11 p-Isopropyltoluene ND ug/kg 1.0 0.11 Naphthalene ND ug/kg 4.0 0.65 n-Propylbenzene ND ug/kg 2.0 0.27 1,2,4-Trichlorobenzene ND ug/kg 2.0 0.27 1,3,5-Trimethylbenzene ND ug/kg 2.0 0.33 Methyl Acetate ND ug/kg 4.0 0.95 Cyclohexane ND ug/kg	Carbon disulfide	ND		ug/kg	10		4.6
2-Hexanone ND ug/kg 10 1.2 1,2-Dibromoethane ND ug/kg 1.0 0.28 n-Butylbenzene ND ug/kg 1.0 0.17 sec-Butylbenzene ND ug/kg 1.0 0.15 tert-Butylbenzene ND ug/kg 2.0 0.12 1,2-Dibromo-3-chloropropane ND ug/kg 3.0 1.0 Isopropylbenzene ND ug/kg 1.0 0.11 p-Isopropyltoluene ND ug/kg 1.0 0.11 Naphthalene ND ug/kg 4.0 0.65 n-Propylbenzene ND ug/kg 1.0 0.17 1,2,4-Trichlorobenzene ND ug/kg 2.0 0.27 1,3,5-Trimethylbenzene ND ug/kg 2.0 0.33 Methyl Acetate ND ug/kg 4.0 0.95 Cyclohexane ND ug/kg 4.0 0.54 Freon-113 ND ug/kg 4.0<	2-Butanone	ND		ug/kg	10		2.2
1,2-Dibromoethane ND ug/kg 1.0 0.28 n-Butylbenzene ND ug/kg 1.0 0.17 sec-Butylbenzene ND ug/kg 1.0 0.15 tert-Butylbenzene ND ug/kg 2.0 0.12 1,2-Dibromo-3-chloropropane ND ug/kg 3.0 1.0 Isopropylbenzene ND ug/kg 1.0 0.11 p-Isopropyltoluene ND ug/kg 1.0 0.11 Naphthalene ND ug/kg 4.0 0.65 n-Propylbenzene ND ug/kg 1.0 0.17 1,2,4-Trichlorobenzene ND ug/kg 2.0 0.27 1,3,5-Trimethylbenzene ND ug/kg 2.0 0.19 1,2,4-Trimethylbenzene ND ug/kg 2.0 0.33 Methyl Acetate ND ug/kg 4.0 0.95 Cyclohexane ND ug/kg 4.0 0.69	4-Methyl-2-pentanone	ND		ug/kg	10		1.3
n-Butylbenzene ND ug/kg 1.0 0.17 sec-Butylbenzene ND ug/kg 1.0 0.15 tert-Butylbenzene ND ug/kg 2.0 0.12 1,2-Dibromo-3-chloropropane ND ug/kg 3.0 1.0 Isopropylbenzene ND ug/kg 1.0 0.11 p-Isopropyltoluene ND ug/kg 1.0 0.11 Naphthalene ND ug/kg 4.0 0.65 n-Propylbenzene ND ug/kg 1.0 0.17 1,2,4-Trichlorobenzene ND ug/kg 2.0 0.27 1,3,5-Trimethylbenzene ND ug/kg 2.0 0.33 Methyl Acetate ND ug/kg 4.0 0.95 Cyclohexane ND ug/kg 4.0 0.54 Freon-113 ND ug/kg 4.0 0.69	2-Hexanone	ND		ug/kg	10		1.2
sec-Butylbenzene ND ug/kg 1.0 0.15 tert-Butylbenzene ND ug/kg 2.0 0.12 1,2-Dibromo-3-chloropropane ND ug/kg 3.0 1.0 Isopropylbenzene ND ug/kg 1.0 0.11 p-Isopropyltoluene ND ug/kg 1.0 0.11 Naphthalene ND ug/kg 4.0 0.65 n-Propylbenzene ND ug/kg 1.0 0.17 1,2,4-Trichlorobenzene ND ug/kg 2.0 0.27 1,3,5-Trimethylbenzene ND ug/kg 2.0 0.19 1,2,4-Trimethylbenzene ND ug/kg 2.0 0.33 Methyl Acetate ND ug/kg 4.0 0.95 Cyclohexane ND ug/kg 10 0.54 Freon-113 ND ug/kg 4.0 0.69	1,2-Dibromoethane	ND		ug/kg	1.0		0.28
tert-Butylbenzene ND ug/kg 2.0 0.12 1,2-Dibromo-3-chloropropane ND ug/kg 3.0 1.0 Isopropylbenzene ND ug/kg 1.0 0.11 p-Isopropyltoluene ND ug/kg 1.0 0.11 Naphthalene ND ug/kg 4.0 0.65 n-Propylbenzene ND ug/kg 1.0 0.17 1,2,4-Trichlorobenzene ND ug/kg 2.0 0.27 1,3,5-Trimethylbenzene ND ug/kg 2.0 0.19 1,2,4-Trimethylbenzene ND ug/kg 2.0 0.33 Methyl Acetate ND ug/kg 4.0 0.95 Cyclohexane ND ug/kg 10 0.54 Freon-113 ND ug/kg 4.0 0.69	n-Butylbenzene	ND		ug/kg	1.0		0.17
1,2-Dibromo-3-chloropropane ND ug/kg 3.0 1.0 Isopropylbenzene ND ug/kg 1.0 0.11 p-Isopropyltoluene ND ug/kg 1.0 0.11 Naphthalene ND ug/kg 4.0 0.65 n-Propylbenzene ND ug/kg 1.0 0.17 1,2,4-Trichlorobenzene ND ug/kg 2.0 0.27 1,3,5-Trimethylbenzene ND ug/kg 2.0 0.19 1,2,4-Trimethylbenzene ND ug/kg 2.0 0.33 Methyl Acetate ND ug/kg 4.0 0.95 Cyclohexane ND ug/kg 10 0.54 Freon-113 ND ug/kg 4.0 0.69	sec-Butylbenzene	ND		ug/kg	1.0		0.15
Sopropylbenzene ND	tert-Butylbenzene	ND		ug/kg	2.0		0.12
p-Isopropyltoluene ND ug/kg 1.0 0.11 Naphthalene ND ug/kg 4.0 0.65 n-Propylbenzene ND ug/kg 1.0 0.17 1,2,4-Trichlorobenzene ND ug/kg 2.0 0.27 1,3,5-Trimethylbenzene ND ug/kg 2.0 0.19 1,2,4-Trimethylbenzene ND ug/kg 2.0 0.33 Methyl Acetate ND ug/kg 4.0 0.95 Cyclohexane ND ug/kg 10 0.54 Freon-113 ND ug/kg 4.0 0.69	1,2-Dibromo-3-chloropropane	ND		ug/kg	3.0		1.0
Naphthalene ND ug/kg 4.0 0.65 n-Propylbenzene ND ug/kg 1.0 0.17 1,2,4-Trichlorobenzene ND ug/kg 2.0 0.27 1,3,5-Trimethylbenzene ND ug/kg 2.0 0.19 1,2,4-Trimethylbenzene ND ug/kg 2.0 0.33 Methyl Acetate ND ug/kg 4.0 0.95 Cyclohexane ND ug/kg 10 0.54 Freon-113 ND ug/kg 4.0 0.69	Isopropylbenzene	ND		ug/kg	1.0		0.11
n-Propylbenzene ND ug/kg 1.0 0.17 1,2,4-Trichlorobenzene ND ug/kg 2.0 0.27 1,3,5-Trimethylbenzene ND ug/kg 2.0 0.19 1,2,4-Trimethylbenzene ND ug/kg 2.0 0.33 Methyl Acetate ND ug/kg 4.0 0.95 Cyclohexane ND ug/kg 10 0.54 Freon-113 ND ug/kg 4.0 0.69	p-Isopropyltoluene	ND		ug/kg	1.0		0.11
1,2,4-Trichlorobenzene ND ug/kg 2.0 0.27 1,3,5-Trimethylbenzene ND ug/kg 2.0 0.19 1,2,4-Trimethylbenzene ND ug/kg 2.0 0.33 Methyl Acetate ND ug/kg 4.0 0.95 Cyclohexane ND ug/kg 10 0.54 Freon-113 ND ug/kg 4.0 0.69	Naphthalene	ND		ug/kg	4.0		0.65
1,3,5-Trimethylbenzene ND ug/kg 2.0 0.19 1,2,4-Trimethylbenzene ND ug/kg 2.0 0.33 Methyl Acetate ND ug/kg 4.0 0.95 Cyclohexane ND ug/kg 10 0.54 Freon-113 ND ug/kg 4.0 0.69	n-Propylbenzene	ND		ug/kg	1.0		0.17
1,2,4-Trimethylbenzene ND ug/kg 2.0 0.33 Methyl Acetate ND ug/kg 4.0 0.95 Cyclohexane ND ug/kg 10 0.54 Freon-113 ND ug/kg 4.0 0.69	1,2,4-Trichlorobenzene	ND		ug/kg	2.0		0.27
Methyl Acetate ND ug/kg 4.0 0.95 Cyclohexane ND ug/kg 10 0.54 Freon-113 ND ug/kg 4.0 0.69	1,3,5-Trimethylbenzene	ND		ug/kg	2.0		0.19
Cyclohexane ND ug/kg 10 0.54 Freon-113 ND ug/kg 4.0 0.69	1,2,4-Trimethylbenzene	ND		ug/kg	2.0		0.33
Freon-113 ND ug/kg 4.0 0.69	Methyl Acetate	ND		ug/kg	4.0		0.95
	Cyclohexane	ND		ug/kg	10		0.54
Methyl cyclohexane ND ug/kg 4.0 0.60	Freon-113	ND		ug/kg	4.0		0.69
	Methyl cyclohexane	ND		ug/kg	4.0		0.60

Project Name: 641 WEST AVE (NIAGARA COUNTY) Lab Number: L1917600

Project Number: Not Specified Report Date: 05/10/19

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 05/06/19 20:16

Analyst: AD

ParameterResultQualifierUnitsRLMDLVolatile Organics by EPA 5035 Low - Westborough Lab for sample(s):05Batch:WG1234352-5

		Acceptance
Surrogate	%Recovery Qualifie	r Criteria
1,2-Dichloroethane-d4	111	70-130
Toluene-d8	94	70-130
4-Bromofluorobenzene	96	70-130
Dibromofluoromethane	109	70-130

L1917600

Project Name: 641 WEST AVE (NIAGARA COUNTY) Lab Number:

Project Number: Not Specified Report Date: 05/10/19

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 05/06/19 20:16

Analyst: AD

Parameter	Result	Qualifier	Units	RL	MDL
Volatile Organics by EPA 5035 Hig WG1234354-5	gh - Westbor	ough Lab foi	sample(s):	01-04,06-07	Batch:
Methylene chloride	ND		ug/kg	250	110
1,1-Dichloroethane	ND		ug/kg	50	7.2
Chloroform	ND		ug/kg	75	7.0
Carbon tetrachloride	ND		ug/kg	50	12.
1,2-Dichloropropane	ND		ug/kg	50	6.2
Dibromochloromethane	ND		ug/kg	50	7.0
1,1,2-Trichloroethane	ND		ug/kg	50	13.
Tetrachloroethene	ND		ug/kg	25	9.8
Chlorobenzene	ND		ug/kg	25	6.4
Trichlorofluoromethane	ND		ug/kg	200	35.
1,2-Dichloroethane	ND		ug/kg	50	13.
1,1,1-Trichloroethane	ND		ug/kg	25	8.4
Bromodichloromethane	ND		ug/kg	25	5.4
trans-1,3-Dichloropropene	ND		ug/kg	50	14.
cis-1,3-Dichloropropene	ND		ug/kg	25	7.9
Bromoform	ND		ug/kg	200	12.
1,1,2,2-Tetrachloroethane	ND		ug/kg	25	8.3
Benzene	ND		ug/kg	25	8.3
Toluene	ND		ug/kg	50	27.
Ethylbenzene	ND		ug/kg	50	7.0
Chloromethane	ND		ug/kg	200	47.
Bromomethane	ND		ug/kg	100	29.
Vinyl chloride	ND		ug/kg	50	17.
Chloroethane	ND		ug/kg	100	23.
1,1-Dichloroethene	ND		ug/kg	50	12.
trans-1,2-Dichloroethene	ND		ug/kg	75	6.8
Trichloroethene	ND		ug/kg	25	6.8
1,2-Dichlorobenzene	ND		ug/kg	100	7.2
1,3-Dichlorobenzene	ND		ug/kg	100	7.4

Project Name: 641 WEST AVE (NIAGARA COUNTY) Lab Number: L1917600

Project Number: Not Specified Report Date: 05/10/19

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 05/06/19 20:16

Analyst: AD

Parameter	Result	Qualifier	Units	RL	MDL
Volatile Organics by EPA 5035 WG1234354-5	High - Westbord	ough Lab fo	r sample(s):	01-04,06-07	Batch:
1,4-Dichlorobenzene	ND		ug/kg	100	8.6
Methyl tert butyl ether	ND		ug/kg	100	10.
p/m-Xylene	ND		ug/kg	100	28.
o-Xylene	ND		ug/kg	50	14.
cis-1,2-Dichloroethene	ND		ug/kg	50	8.8
Styrene	ND		ug/kg	50	9.8
Dichlorodifluoromethane	ND		ug/kg	500	46.
Acetone	ND		ug/kg	500	240
Carbon disulfide	ND		ug/kg	500	230
2-Butanone	ND		ug/kg	500	110
4-Methyl-2-pentanone	ND		ug/kg	500	64.
2-Hexanone	ND		ug/kg	500	59.
1,2-Dibromoethane	ND		ug/kg	50	14.
n-Butylbenzene	ND		ug/kg	50	8.4
sec-Butylbenzene	ND		ug/kg	50	7.3
tert-Butylbenzene	ND		ug/kg	100	5.9
1,2-Dibromo-3-chloropropane	ND		ug/kg	150	50.
Isopropylbenzene	ND		ug/kg	50	5.4
p-Isopropyltoluene	ND		ug/kg	50	5.4
Naphthalene	ND		ug/kg	200	32.
n-Propylbenzene	ND		ug/kg	50	8.6
1,2,4-Trichlorobenzene	ND		ug/kg	100	14.
1,3,5-Trimethylbenzene	ND		ug/kg	100	9.6
1,2,4-Trimethylbenzene	ND		ug/kg	100	17.
Methyl Acetate	ND		ug/kg	200	48.
Cyclohexane	ND		ug/kg	500	27.
Freon-113	ND		ug/kg	200	35.
Methyl cyclohexane	ND		ug/kg	200	30.

Project Name: 641 WEST AVE (NIAGARA COUNTY) **Lab Number:** L1917600

Project Number: Not Specified Report Date: 05/10/19

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 05/06/19 20:16

Analyst: AD

ParameterResultQualifierUnitsRLMDLVolatile Organics by EPA 5035 High - Westborough Lab for sample(s):01-04,06-07Batch:WG1234354-5

		Acceptance	
Surrogate	%Recovery Quali	fier Criteria	_
1,2-Dichloroethane-d4	111	70-130	
Toluene-d8	94	70-130	
4-Bromofluorobenzene	96	70-130	
Dibromofluoromethane	108	70-130	

Project Name: 641 WEST AVE (NIAGARA COUNTY)

Project Number: Not Specified

Lab Number: L1917600

Report Date: 05/10/19

Parameter	LCS %Recovery	Qual	LCSD %Recovery		covery mits RPD	RPD Qual Limits
Volatile Organics by EPA 5035 Low - Westbo	orough Lab Asso	ociated sample	e(s): 05 Batch:	: WG1234352-3	WG1234352-4	
Methylene chloride	95		95	70-	130 0	30
1,1-Dichloroethane	108		108	70-	130 0	30
Chloroform	120		122	70-	130 2	30
Carbon tetrachloride	142	Q	139	Q 70-	130 2	30
1,2-Dichloropropane	100		101	70-	130 1	30
Dibromochloromethane	111		111	70-	130 0	30
1,1,2-Trichloroethane	95		93	70-	130 2	30
Tetrachloroethene	112		106	70-	130 6	30
Chlorobenzene	103		102	70-	130 1	30
Trichlorofluoromethane	159	Q	161	Q 70-	139 1	30
1,2-Dichloroethane	123		123	70-	130 0	30
1,1,1-Trichloroethane	135	Q	134	Q 70-	130 1	30
Bromodichloromethane	123		125	70-	130 2	30
trans-1,3-Dichloropropene	109		106	70-	130 3	30
cis-1,3-Dichloropropene	115		117	70-	130 2	30
Bromoform	105		104	70-	130 1	30
1,1,2,2-Tetrachloroethane	83		83	70-	130 0	30
Benzene	107		106	70-	130 1	30
Toluene	99		99	70-	130 0	30
Ethylbenzene	108		107	70-	130 1	30
Chloromethane	105		99	52-	130 6	30
Bromomethane	121		122	57-	147 1	30
Vinyl chloride	120		118	67-	130 2	30

Project Name: 641 WEST AVE (NIAGARA COUNTY)

Not Specified

Project Number:

Lab Number:

L1917600

Report Date:

nrameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
platile Organics by EPA 5035 Low - V	Westborough Lab Asso	ciated sample(s): 05 Batch:	WG1234352-3 WG123435	52-4	
Chloroethane	141	141	50-151	0	30
1,1-Dichloroethene	109	107	65-135	2	30
trans-1,2-Dichloroethene	109	108	70-130	1	30
Trichloroethene	120	117	70-130	3	30
1,2-Dichlorobenzene	99	97	70-130	2	30
1,3-Dichlorobenzene	101	100	70-130	1	30
1,4-Dichlorobenzene	98	98	70-130	0	30
Methyl tert butyl ether	115	115	66-130	0	30
p/m-Xylene	111	107	70-130	4	30
o-Xylene	115	108	70-130	6	30
cis-1,2-Dichloroethene	116	112	70-130	4	30
Styrene	119	113	70-130	5	30
Dichlorodifluoromethane	110	105	30-146	5	30
Acetone	104	98	54-140	6	30
Carbon disulfide	99	99	59-130	0	30
2-Butanone	86	86	70-130	0	30
4-Methyl-2-pentanone	83	76	70-130	9	30
2-Hexanone	80	75	70-130	6	30
1,2-Dibromoethane	101	102	70-130	1	30
n-Butylbenzene	103	99	70-130	4	30
sec-Butylbenzene	102	101	70-130	1	30
tert-Butylbenzene	105	104	70-130	1	30
1,2-Dibromo-3-chloropropane	92	93	68-130	1	30

Project Name: 641 WEST AVE (NIAGARA COUNTY)

Project Number: Not Specified

Lab Number: L191

L1917600

Report Date:

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
platile Organics by EPA 5035 Low - Westbo	rough Lab Asso	ociated samp	ole(s): 05 Batch:	WG1234352	2-3 WG12343	352-4		
Isopropylbenzene	108		102		70-130	6		30
p-lsopropyltoluene	107		106		70-130	1		30
Naphthalene	96		95		70-130	1		30
n-Propylbenzene	98		97	70-130		1		30
1,2,4-Trichlorobenzene	102		101		70-130	1		30
1,3,5-Trimethylbenzene	106		105		70-130	1		30
1,2,4-Trimethylbenzene	107		106		70-130	1		30
Methyl Acetate	82		84		51-146	2		30
Cyclohexane	99		99		59-142	0		30
Freon-113	114		112		50-139	2		30
Methyl cyclohexane	112		107		70-130	5		30

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	112	111	70-130
Toluene-d8	95	94	70-130
4-Bromofluorobenzene	100	99	70-130
Dibromofluoromethane	109	108	70-130

Project Name: 641 WEST AVE (NIAGARA COUNTY)

Not Specified

Project Number:

OTT WEST TWE (MINIOR II OT GOOD)

Lab Number:

L1917600

Report Date:

nrameter	LCS %Recovery	Qual %	LCSD 6Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
blatile Organics by EPA 5035 High	- Westborough Lab Ass	ociated sample(s): 01-04,06-07	7 Batch:	WG1234354-3	WG1234354-4	
Methylene chloride	95		95		70-130	0	30
1,1-Dichloroethane	108		108		70-130	0	30
Chloroform	120		122		70-130	2	30
Carbon tetrachloride	142	Q	139	Q	70-130	2	30
1,2-Dichloropropane	100		101		70-130	1	30
Dibromochloromethane	111		111		70-130	0	30
1,1,2-Trichloroethane	95		93		70-130	2	30
Tetrachloroethene	112		106		70-130	6	30
Chlorobenzene	103		102		70-130	1	30
Trichlorofluoromethane	159	Q	161	Q	70-139	1	30
1,2-Dichloroethane	123		123		70-130	0	30
1,1,1-Trichloroethane	135	Q	134	Q	70-130	1	30
Bromodichloromethane	123		125		70-130	2	30
trans-1,3-Dichloropropene	109		106		70-130	3	30
cis-1,3-Dichloropropene	115		117		70-130	2	30
Bromoform	105		104		70-130	1	30
1,1,2,2-Tetrachloroethane	83		83		70-130	0	30
Benzene	107		106		70-130	1	30
Toluene	99		99		70-130	0	30
Ethylbenzene	108		107		70-130	1	30
Chloromethane	105		99		52-130	6	30
Bromomethane	121		122		57-147	1	30
Vinyl chloride	120		118		67-130	2	30

Project Name: 641 WEST AVE (NIAGARA COUNTY)

Project Number: Not Specified

Lab Number: L1917600

Report Date: 05/10/19

Parameter	LCS %Recovery	Qual %	LCSD Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Volatile Organics by EPA 5035 High - Westbo	orough Lab Ass	sociated sample(s)	01-04,06-07	Batch:	WG1234354-3	WG1234354-4	
Chloroethane	141		141		50-151	0	30
1,1-Dichloroethene	109		107		65-135	2	30
trans-1,2-Dichloroethene	109		108		70-130	1	30
Trichloroethene	120		117		70-130	3	30
1,2-Dichlorobenzene	99		97		70-130	2	30
1,3-Dichlorobenzene	101		100		70-130	1	30
1,4-Dichlorobenzene	98		98		70-130	0	30
Methyl tert butyl ether	115		115		66-130	0	30
p/m-Xylene	111		107		70-130	4	30
o-Xylene	115		108		70-130	6	30
cis-1,2-Dichloroethene	116		112		70-130	4	30
Styrene	119		113		70-130	5	30
Dichlorodifluoromethane	110		105		30-146	5	30
Acetone	104		98		54-140	6	30
Carbon disulfide	99		99		59-130	0	30
2-Butanone	86		86		70-130	0	30
4-Methyl-2-pentanone	83		76		70-130	9	30
2-Hexanone	80		75		70-130	6	30
1,2-Dibromoethane	101		102		70-130	1	30
n-Butylbenzene	103		99		70-130	4	30
sec-Butylbenzene	102		101		70-130	1	30
tert-Butylbenzene	105		104		70-130	1	30
1,2-Dibromo-3-chloropropane	92		93		68-130	1	30

Project Name: 641 WEST AVE (NIAGARA COUNTY)

Project Number: Not Specified

Lab Number: L1917600

Report Date: 05/10/19

arameter	LCS %Recovery	Qual %	LCSD Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by EPA 5035 High - Westbo	orough Lab Ass	sociated sample(s)	: 01-04,06-07	Batch:	WG1234354-3	WG1234354-4		
Isopropylbenzene	108		102		70-130	6		30
p-Isopropyltoluene	107		106		70-130	1		30
Naphthalene	96		95		70-130	1		30
n-Propylbenzene	98		97		70-130	1		30
1,2,4-Trichlorobenzene	102		101		70-130	1		30
1,3,5-Trimethylbenzene	106		105		70-130	1		30
1,2,4-Trimethylbenzene	107		106		70-130	1		30
Methyl Acetate	82		84		51-146	2		30
Cyclohexane	99		99		59-142	0		30
Freon-113	114		112		50-139	2		30
Methyl cyclohexane	112		107		70-130	5		30

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	112	111	70-130
Toluene-d8	95	94	70-130
4-Bromofluorobenzene	100	100	70-130
Dibromofluoromethane	109	108	70-130

Matrix Spike Analysis Batch Quality Control

Project Name: 641 WEST AVE (NIAGARA COUNTY)

Project Number: Not Specified

Lab Number:

L1917600

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by EPA 503 Client ID: EB-9	5 High - West	borough Lab	Associated	d sample(s): 01-0	04,06-07	QC Batch	ID: WG12343	354-6 V	VG1234354-	7 QC	Sample:	L1917600-07
Methylene chloride	ND	4700	4400	94		4500	96		70-130	2		30
1,1-Dichloroethane	ND	4700	5000	106		5100	108		70-130	3		30
Chloroform	ND	4700	5300	112		5300	114		70-130	2		30
Carbon tetrachloride	ND	4700	6100	130		6100	130		70-130	0		30
1,2-Dichloropropane	ND	4700	4700	100		4800	102		70-130	2		30
Dibromochloromethane	ND	4700	4800	102		4900	104		70-130	1		30
1,1,2-Trichloroethane	ND	4700	4100	88		4200	90		70-130	2		30
Tetrachloroethene	ND	4700	4200	89		4400	94		70-130	5		30
Chlorobenzene	ND	4700	4000	84		4100	88		70-130	4		30
Trichlorofluoromethane	ND	4700	6100	129		6000	128		70-139	1		30
1,2-Dichloroethane	ND	4700	5400	114		5300	112		70-130	2		30
1,1,1-Trichloroethane	ND	4700	6100	129		6200	131	Q	70-130	1		30
Bromodichloromethane	ND	4700	5500	116		5500	118		70-130	1		30
trans-1,3-Dichloropropene	ND	4700	4600	98		4700	100		70-130	2		30
cis-1,3-Dichloropropene	ND	4700	5200	111		5300	113		70-130	2		30
Bromoform	ND	4700	4400	93		4600	97		70-130	4		30
1,1,2,2-Tetrachloroethane	ND	4700	3400	73		3500	74		70-130	3		30
Benzene	ND	4700	4800	102		5000	106		70-130	3		30
Toluene	ND	4700	4100	87		4300	91		70-130	5		30
Ethylbenzene	ND	4700	4100	86		4300	91		70-130	6		30
Chloromethane	ND	4700	4200	89		4300	92		52-130	3		30
Bromomethane	ND	4700	5200	111		5800	124		57-147	11		30
Vinyl chloride	ND	4700	5200	110		5400	115		67-130	5		30

Matrix Spike Analysis Batch Quality Control

Project Name: 641 WEST AVE (NIAGARA COUNTY)

Project Number: Not Specified

Lab Number:

L1917600

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by EPA 50 Client ID: EB-9	035 High - West	borough Lab	Associated	d sample(s): 01-0	04,06-07	QC Batch	n ID: WG12343	354-6 WG1234354	-7 QC	Sample: L1917600-07
Chloroethane	ND	4700	5000	107		5000	106	50-151	1	30
1,1-Dichloroethene	ND	4700	5300	112		5400	116	65-135	3	30
trans-1,2-Dichloroethene	ND	4700	5100	108		5200	111	70-130	3	30
Trichloroethene	ND	4700	5300	112		5500	118	70-130	5	30
1,2-Dichlorobenzene	ND	4700	3500	75		3800	80	70-130	7	30
1,3-Dichlorobenzene	ND	4700	3400	72		3600	77	70-130	8	30
1,4-Dichlorobenzene	ND	4700	3300	70		3500	75	70-130	8	30
Methyl tert butyl ether	ND	4700	5400	116		5400	116	66-130	0	30
o/m-Xylene	ND	9400	8000	86		8500	90	70-130	5	30
o-Xylene	ND	9400	8300	88		8800	94	70-130	6	30
cis-1,2-Dichloroethene	ND	4700	5100	108		5200	111	70-130	3	30
Styrene	ND	9400	8700	92		9100	97	70-130	5	30
Dichlorodifluoromethane	ND	4700	4900	103		4900	104	30-146	1	30
Acetone	ND	4700	4500	95		4500	96	54-140	1	30
Carbon disulfide	ND	4700	4700	100		5000	105	59-130	5	30
2-Butanone	ND	4700	3900	82		3800	82	70-130	0	30
4-Methyl-2-pentanone	ND	4700	3600	76		3600	77	70-130	1	30
2-Hexanone	ND	4700	3800	80		3900	83	70-130	3	30
1,2-Dibromoethane	ND	4700	4500	96		4600	97	70-130	1	30
n-Butylbenzene	ND	4700	2800	60	Q	3300	69	Q 70-130	14	30
sec-Butylbenzene	ND	4700	3300	70		3700	79	70-130	12	30
tert-Butylbenzene	ND	4700	3600	77		4000	85	70-130	10	30
1,2-Dibromo-3-chloropropane	ND	4700	4300	91		4300	92	68-130	1	30

Matrix Spike Analysis Batch Quality Control

Project Name: 641 WEST AVE (NIAGARA COUNTY)

Project Number: Not Specified

Lab Number:

L1917600

Report Date: 05/10/19

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by EPA 50 Client ID: EB-9	35 High - West	borough Lab	Associated :	sample(s): 01-0	04,06-07	QC Batch	n ID: WG12343	354-6 WG1234354-	7 QC	Sample: L1917600-07
Isopropylbenzene	ND	4700	3600	77		4000	85	70-130	9	30
p-Isopropyltoluene	ND	4700	3300	70		3700	79	70-130	12	30
Naphthalene	ND	4700	4100	87		4100	86	70-130	1	30
n-Propylbenzene	ND	4700	3200	68	Q	3600	76	70-130	11	30
1,2,4-Trichlorobenzene	ND	4700	3500	74		3600	77	70-130	4	30
1,3,5-Trimethylbenzene	ND	4700	3500	74		3800	82	70-130	10	30
1,2,4-Trimethylbenzene	ND	4700	3500	75		3800	82	70-130	9	30
Methyl Acetate	ND	4700	4800	102		5000	107	51-146	4	30
Cyclohexane	ND	4700	5000	106		5100	109	59-142	4	30
Freon-113	ND	4700	5700	120		5800	123	50-139	2	30
Methyl cyclohexane	ND	4700	5300	112		5500	117	70-130	4	30

	MS	MSD	Acceptance
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria
1,2-Dichloroethane-d4	108	102	70-130
4-Bromofluorobenzene	98	98	70-130
Dibromofluoromethane	107	104	70-130
Toluene-d8	93	93	70-130

SEMIVOLATILES

05/10/19

Project Name: Lab Number: 641 WEST AVE (NIAGARA COUNTY) L1917600

Project Number: Not Specified

SAMPLE RESULTS

Date Collected: 04/29/19 09:00

Report Date:

Lab ID: L1917600-01 Date Received: 04/29/19 Client ID: EB-1

Sample Location: 641 WEST AVE., LOCKPORT, NY Field Prep: Not Specified

Sample Depth:

Analytical Date:

Extraction Method: EPA 3546 Matrix: Soil **Extraction Date:** 05/05/19 13:57 Analytical Method: 1,8270D

Analyst: JG 86% Percent Solids:

05/09/19 19:37

Hexachlorobenzene ND ug/kg 110 21. 1	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Hexachlorobenzene ND ug/kg 110 21. 1	Semivolatile Organics by GC/MS -	Westborough Lab					
Section Sect	Acenaphthene	230		ug/kg	150	20.	1
2-Chloronaphthalene ND ug/kg 190 19. 1 3,3'-Dichlorobenzidine ND ug/kg 190 38. 1 2,4-Dinitrotoluene ND ug/kg 190 38. 1 2,6-Dinitrotoluene ND ug/kg 190 32. 1 Fliuronaphthalene ND ug/kg 190 32. 1 Fliuronaphthalene ND ug/kg 110 22. 1 4-Chlorophenyl phenyl ether ND ug/kg 190 20. 1 4-Bromophenyl phenyl ether ND ug/kg 190 29. 1 Bis(2-chloroisopropyl)ether ND ug/kg 190 29. 1 Bis(2-chloroisopropyl)ether ND ug/kg 230 32. 1 Bis(2-chloroisopropyl)ether ND ug/kg 200 19. 1 Hexachloroobtaddiene ND ug/kg 190 28. 1 ND Hexachloroobtaddiene ND ug/kg 190 28. 1 ND ND ug/kg 170 25. 1 Naphthalene 110 J ug/kg 170 25. 1 Naphthalene ND ug/kg 190 23. 1 NIfrobenzene ND ug/kg 190 23. 1 NIfrobenzene ND ug/kg 190 29. 1 Bis(2-ethylophthalate ND ug/kg 190 29. 1 Bulyl benzyl phthalate ND ug/kg 190 48. 1 Din-n-butylphthalate ND ug/kg 190 40. 1 Benzo(a)anthracene	Hexachlorobenzene	ND		ug/kg	110	21.	1
3,3-Dichlorobenzidine ND ug/kg 190 38. 1 2,4-Dinitrotoluene ND ug/kg 190 38. 1 2,6-Dinitrotoluene ND ug/kg 190 32. 1 Fluoranthene ND ug/kg 110 22. 1 4-Chlorophenyl ether ND ug/kg 190 20. 1 4-Bromophenyl phenyl ether ND ug/kg 190 20. 1 4-Bromophenyl phenyl ether ND ug/kg 190 29. 1 Bis(2-chloroisopropyl)ether ND ug/kg 200 19. 1 Bis(2-chloroisopropyl)ether ND ug/kg 200 19. 1 Bis(2-chloroisopropyl)ether ND ug/kg 200 19. 1 Bis(2-chloroisopropyl)ether ND ug/kg 190 28. 1 Hexachlorocyclopentadiene ND ug/kg 190 28. 1 Hexachlorocyclopentadiene ND ug/kg 190 28. 1 Hexachlorocyclopentadiene ND ug/kg 150 31. 1 Isophorone ND ug/kg 170 25. 1 Naphthalene 110 J ug/kg 170 25. 1 Nitrobenzene ND ug/kg 170 28. 1 NITOPA/DPA ND ug/kg 170 28. 1 NITOPA/DPA ND ug/kg 190 29. 1 ND NDPA/DPA ND ug/kg 190 29. 1 Bis(2-ethylhexyl)phthalate ND ug/kg 190 36. 1 Bis(2-ethylhexyl)phthalate ND ug/kg 190 48. 1 Din-butylphthalate ND ug/kg 190 48. 1 Din-butylphthalate ND ug/kg 190 36. 1 Din-butylphthalate ND ug/kg 190 36. 1 Dinethyl phthalate ND ug/kg 190 40. 1 Benzo(a)anthracene	Bis(2-chloroethyl)ether	ND		ug/kg	170	26.	1
2.4-Dinitrotoluene ND ug/kg 190 38. 1 2.6-Dinitrotoluene ND ug/kg 190 32. 1 Fluoranthene ND ug/kg 110 22. 1 4-Chlorophenyl phenyl ether ND ug/kg 190 20. 1 4-Bromophenyl phenyl ether ND ug/kg 190 29. 1 Bis(2-chlorospropyl)ether ND ug/kg 230 32. 1 Bis(2-chlorospropyl)ether ND ug/kg 200 19. 1 Hexachlorobutadiene ND ug/kg 190 28. 1 Hexachlorocyclopentadiene ND ug/kg 540 170 1 Hexachlorocyclopentadiene ND ug/kg 540 170 1 Hexachlorocyclopentadiene ND ug/kg 150 31. 1 Hexachlorocyclopentadiene ND ug/kg 150 31. 1 Isophorocyclopentadiene ND	2-Chloronaphthalene	ND		ug/kg	190	19.	1
2,6-Dinitrotoluene ND ug/kg 190 32. 1 Fluoranthene ND ug/kg 110 22. 1 4-Chlorophenyl phenyl ether ND ug/kg 190 20. 1 4-Bromophenyl phenyl ether ND ug/kg 190 29. 1 Bis(2-chlorospropyl)ether ND ug/kg 230 32. 1 Bis(2-chloroethoxy)methane ND ug/kg 200 19. 1 Hexachlorobuddlene ND ug/kg 190 28. 1 Hexachlorocyclopentadiene ND ug/kg 540 170 1 Hexachlorothane ND ug/kg 150 31. 1 Isophorone ND ug/kg 170 25. 1 Naphthalene 110 J ug/kg 170 28. 1 NIPOA/DPA ND ug/kg 170 28. 1 NIPOA/DPA ND ug/kg 190 <t< td=""><td>3,3'-Dichlorobenzidine</td><td>ND</td><td></td><td>ug/kg</td><td>190</td><td>50.</td><td>1</td></t<>	3,3'-Dichlorobenzidine	ND		ug/kg	190	50.	1
Fluoranthene ND	2,4-Dinitrotoluene	ND		ug/kg	190	38.	1
4-Chlorophenyl phenyl ether	2,6-Dinitrotoluene	ND		ug/kg	190	32.	1
4-Bromophenyl phenyl ether ND ug/kg 190 29. 1 Bis(2-chloroisopropyl)ether ND ug/kg 230 32. 1 Bis(2-chloroethoxy)methane ND ug/kg 200 19. 1 Hexachlorobtuadiene ND ug/kg 190 28. 1 Hexachlorocyclopentadiene ND ug/kg 540 170 1 Hexachlorocyclopentadiene ND ug/kg 150 31. 1 Isophorone ND ug/kg 170 25. 1 Naphthalene 110 J ug/kg 190 23. 1 Nitrobenzene ND ug/kg 170 25. 1 Nitrobenzene ND ug/kg 170 25. 1 NITrobenzene ND ug/kg 170 28. 1 NIDPA/DPA ND ug/kg 170 28. 1 NDPA/DPA ND ug/kg 170 28. 1 NDPA/DPA ND ug/kg 190 29. 1 Bis(2-ethylhexyl)phthalate ND ug/kg 190 48. 1 Din-n-butylphthalate ND ug/kg 190 48. 1 Din-n-butylphthalate ND ug/kg 190 36. 1 Din-n-octylphthalate ND ug/kg 190 64. 1 Din-n-octylphthalate ND ug/kg 190 40. 1	Fluoranthene	ND		ug/kg	110	22.	1
Bis(2-chloroisopropyl)ether ND	4-Chlorophenyl phenyl ether	ND		ug/kg	190	20.	1
Bis(2-chloroethoxy)methane	4-Bromophenyl phenyl ether	ND		ug/kg	190	29.	1
Hexachlorobutadiene ND ug/kg 190 28. 1 Hexachlorocyclopentadiene ND ug/kg 540 170 1 Hexachlorocyclopentadiene ND ug/kg 150 31. 1 Hexachlorocyclopentadiene ND ug/kg 150 31. 1 Isophorone ND ug/kg 170 25. 1 Naphthalene 110 J ug/kg 190 23. 1 Nitrobenzene ND ug/kg 170 28. 1 NDPA/DPA ND ug/kg 150 22. 1 n-Nitrosodi-n-propylamine ND ug/kg 190 29. 1 Bis(2-ethylhexyl)phthalate ND ug/kg 190 66. 1 Butyl benzyl phthalate ND ug/kg 190 48. 1 Di-n-butylphthalate ND ug/kg 190 64. 1 Di-n-botylphthalate ND ug/kg 190<	Bis(2-chloroisopropyl)ether	ND		ug/kg	230	32.	1
Hexachlorocyclopentadiene ND	Bis(2-chloroethoxy)methane	ND		ug/kg	200	19.	1
Hexachloroethane	Hexachlorobutadiene	ND		ug/kg	190	28.	1
Sophorone ND	Hexachlorocyclopentadiene	ND		ug/kg	540	170	1
Naphthalene 110 J ug/kg 190 23. 1 Nitrobenzene ND ug/kg 170 28. 1 NDPA/DPA ND ug/kg 150 22. 1 n-Nitrosodi-n-propylamine ND ug/kg 190 29. 1 Bis(2-ethylhexyl)phthalate ND ug/kg 190 66. 1 Butyl benzyl phthalate ND ug/kg 190 48. 1 Di-n-butylphthalate ND ug/kg 190 36. 1 Di-n-botylphthalate ND ug/kg 190 64. 1 Di-thyl phthalate ND ug/kg 190 18. 1 Dimethyl phthalate ND ug/kg 190 40. 1 Benzo(a)anthracene ND ug/kg 110 21. 1	Hexachloroethane	ND		ug/kg	150	31.	1
Nitrobenzene ND ug/kg 170 28. 1 NDPA/DPA ND ug/kg 150 22. 1 n-Nitrosodi-n-propylamine ND ug/kg 190 29. 1 Bis(2-ethylhexyl)phthalate ND ug/kg 190 66. 1 Butyl benzyl phthalate ND ug/kg 190 48. 1 Di-n-butylphthalate ND ug/kg 190 36. 1 Di-n-octylphthalate ND ug/kg 190 64. 1 Diethyl phthalate ND ug/kg 190 18. 1 Dimethyl phthalate ND ug/kg 190 40. 1 Benzo(a)anthracene ND ug/kg 110 21. 1	Isophorone	ND		ug/kg	170	25.	1
ND	Naphthalene	110	J	ug/kg	190	23.	1
ND	Nitrobenzene	ND		ug/kg	170	28.	1
Bis(2-ethylhexyl)phthalate ND ug/kg 190 66. 1 Butyl benzyl phthalate ND ug/kg 190 48. 1 Di-n-butylphthalate ND ug/kg 190 36. 1 Di-n-octylphthalate ND ug/kg 190 64. 1 Diethyl phthalate ND ug/kg 190 18. 1 Dimethyl phthalate ND ug/kg 190 40. 1 Benzo(a)anthracene ND ug/kg 110 21. 1	NDPA/DPA	ND		ug/kg	150	22.	1
Butyl benzyl phthalate ND ug/kg 190 48. 1 Di-n-butylphthalate ND ug/kg 190 36. 1 Di-n-octylphthalate ND ug/kg 190 64. 1 Diethyl phthalate ND ug/kg 190 18. 1 Dimethyl phthalate ND ug/kg 190 40. 1 Benzo(a)anthracene ND ug/kg 110 21. 1	n-Nitrosodi-n-propylamine	ND		ug/kg	190	29.	1
Di-n-butylphthalate ND ug/kg 190 36. 1 Di-n-octylphthalate ND ug/kg 190 64. 1 Diethyl phthalate ND ug/kg 190 18. 1 Dimethyl phthalate ND ug/kg 190 40. 1 Benzo(a)anthracene ND ug/kg 110 21. 1	Bis(2-ethylhexyl)phthalate	ND		ug/kg	190	66.	1
Di-n-octylphthalate ND ug/kg 190 64. 1 Diethyl phthalate ND ug/kg 190 18. 1 Dimethyl phthalate ND ug/kg 190 40. 1 Benzo(a)anthracene ND ug/kg 110 21. 1	Butyl benzyl phthalate	ND		ug/kg	190	48.	1
Diethyl phthalate ND ug/kg 190 18. 1 Dimethyl phthalate ND ug/kg 190 40. 1 Benzo(a)anthracene ND ug/kg 110 21. 1	Di-n-butylphthalate	ND		ug/kg	190	36.	1
Dimethyl phthalate ND ug/kg 190 40. 1 Benzo(a)anthracene ND ug/kg 110 21. 1	Di-n-octylphthalate	ND		ug/kg	190	64.	1
Benzo(a)anthracene ND ug/kg 110 21. 1	Diethyl phthalate	ND		ug/kg	190	18.	1
-59	Dimethyl phthalate	ND		ug/kg	190	40.	1
Benzo(a)pyrene ND ug/kg 150 46. 1	Benzo(a)anthracene	ND		ug/kg	110	21.	1
	Benzo(a)pyrene	ND		ug/kg	150	46.	1

05/10/19

Project Name: 641 WEST AVE (NIAGARA COUNTY) Lab Number: L1917600

Project Number: Not Specified Report Date:

SAMPLE RESULTS

Lab ID: L1917600-01 Date Collected: 04/29/19 09:00

Client ID: EB-1 Date Received: 04/29/19

Sample Location: 641 WEST AVE., LOCKPORT, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS	- Westborough Lab						
Benzo(b)fluoranthene	ND		ug/kg	110	32.	1	
Benzo(k)fluoranthene	ND		ug/kg	110	30.	1	
Chrysene	ND		ug/kg	110	20.	1	
Acenaphthylene	ND		ug/kg	150	29.	1	
Anthracene	120		ug/kg	110	37.	1	
Benzo(ghi)perylene	ND		ug/kg	150	22.	1	
Fluorene	620		ug/kg	190	18.	1	_
Phenanthrene	1400		ug/kg	110	23.	1	
Dibenzo(a,h)anthracene	ND		ug/kg	110	22.	1	
Indeno(1,2,3-cd)pyrene	ND		ug/kg	150	26.	1	_
Pyrene	62	J	ug/kg	110	19.	1	_
Biphenyl	ND		ug/kg	430	44.	1	
4-Chloroaniline	ND		ug/kg	190	34.	1	
2-Nitroaniline	ND		ug/kg	190	37.	1	
3-Nitroaniline	ND		ug/kg	190	36.	1	
4-Nitroaniline	ND		ug/kg	190	79.	1	
Dibenzofuran	310		ug/kg	190	18.	1	
2-Methylnaphthalene	ND		ug/kg	230	23.	1	
1,2,4,5-Tetrachlorobenzene	ND		ug/kg	190	20.	1	
Acetophenone	ND		ug/kg	190	24.	1	
2,4,6-Trichlorophenol	ND		ug/kg	110	36.	1	
p-Chloro-m-cresol	ND		ug/kg	190	28.	1	_
2-Chlorophenol	ND		ug/kg	190	22.	1	
2,4-Dichlorophenol	ND		ug/kg	170	30.	1	
2,4-Dimethylphenol	ND		ug/kg	190	63.	1	
2-Nitrophenol	ND		ug/kg	410	71.	1	
4-Nitrophenol	ND		ug/kg	260	77.	1	
2,4-Dinitrophenol	ND		ug/kg	910	88.	1	
4,6-Dinitro-o-cresol	ND		ug/kg	490	91.	1	
Pentachlorophenol	ND		ug/kg	150	42.	1	
Phenol	ND		ug/kg	190	29.	1	
2-Methylphenol	ND		ug/kg	190	29.	1	
3-Methylphenol/4-Methylphenol	ND		ug/kg	270	30.	1	
2,4,5-Trichlorophenol	ND		ug/kg	190	36.	1	
Carbazole	ND		ug/kg	190	18.	1	
Atrazine	ND		ug/kg	150	66.	1	
Benzaldehyde	ND		ug/kg	250	51.	1	

05/10/19

Project Name: 641 WEST AVE (NIAGARA COUNTY) Lab Number: L1917600

Project Number: Not Specified

SAMPLE RESULTS

Date Collected: 04/29/19 09:00

Report Date:

Lab ID: L1917600-01 Client ID: Date Received: 04/29/19 EB-1

Sample Location: Field Prep: Not Specified 641 WEST AVE., LOCKPORT, NY

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - W	estborough Lab						
Caprolactam	ND		ug/kg	190	58.	1	
2,3,4,6-Tetrachlorophenol	ND		ug/kg	190	38.	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	86	25-120
Phenol-d6	86	10-120
Nitrobenzene-d5	112	23-120
2-Fluorobiphenyl	78	30-120
2,4,6-Tribromophenol	79	10-136
4-Terphenyl-d14	74	18-120

Project Name: Lab Number: 641 WEST AVE (NIAGARA COUNTY) L1917600

Report Date: **Project Number:** Not Specified 05/10/19

SAMPLE RESULTS

Lab ID: L1917600-02 Date Collected: 04/29/19 09:00

Date Received: 04/29/19 Client ID: DUP (EB-1)

641 WEST AVE., LOCKPORT, NY Sample Location: Field Prep: Not Specified

Sample Depth:

Extraction Method: EPA 3546 Matrix: Soil **Extraction Date:** 05/05/19 13:57

Analytical Method: 1,8270D 05/09/19 19:13 Analytical Date:

Analyst: JG 79% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - W	estborough Lab					
Acenaphthene	450		ug/kg	160	21.	1
Hexachlorobenzene	ND		ug/kg	120	23.	1
Bis(2-chloroethyl)ether	ND		ug/kg	190	28.	1
2-Chloronaphthalene	ND		ug/kg	210	20.	1
3,3'-Dichlorobenzidine	ND		ug/kg	210	55.	1
2,4-Dinitrotoluene	ND		ug/kg	210	41.	1
2,6-Dinitrotoluene	ND		ug/kg	210	35.	1
Fluoranthene	50	J	ug/kg	120	24.	1
4-Chlorophenyl phenyl ether	ND		ug/kg	210	22.	1
4-Bromophenyl phenyl ether	ND		ug/kg	210	32.	1
Bis(2-chloroisopropyl)ether	ND		ug/kg	250	35.	1
Bis(2-chloroethoxy)methane	ND		ug/kg	220	21.	1
Hexachlorobutadiene	ND		ug/kg	210	30.	1
Hexachlorocyclopentadiene	ND		ug/kg	590	190	1
Hexachloroethane	ND		ug/kg	160	33.	1
Isophorone	ND		ug/kg	190	27.	1
Naphthalene	200	J	ug/kg	210	25.	1
Nitrobenzene	ND		ug/kg	190	31.	1
NDPA/DPA	ND		ug/kg	160	24.	1
n-Nitrosodi-n-propylamine	ND		ug/kg	210	32.	1
Bis(2-ethylhexyl)phthalate	ND		ug/kg	210	72.	1
Butyl benzyl phthalate	ND		ug/kg	210	52.	1
Di-n-butylphthalate	ND		ug/kg	210	39.	1
Di-n-octylphthalate	ND		ug/kg	210	70.	1
Diethyl phthalate	ND		ug/kg	210	19.	1
Dimethyl phthalate	ND		ug/kg	210	43.	1
Benzo(a)anthracene	ND		ug/kg	120	23.	1
Benzo(a)pyrene	ND		ug/kg	160	50.	1

05/10/19

Project Name: 641 WEST AVE (NIAGARA COUNTY) Lab Number: L1917600

Project Number: Not Specified

SAMPLE RESULTS

Date Collected: 04/29/19 09:00

Report Date:

Lab ID: L1917600-02 DUP (EB-1) Client ID: Date Received: 04/29/19

641 WEST AVE., LOCKPORT, NY Sample Location: Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - V	Westborough Lab					
Benzo(b)fluoranthene	ND		ug/kg	120	35.	1
Benzo(k)fluoranthene	ND		ug/kg	120	33.	1
Chrysene	ND		ug/kg	120	22.	1
Acenaphthylene	ND		ug/kg	160	32.	1
Anthracene	220		ug/kg	120	40.	1
Benzo(ghi)perylene	ND		ug/kg	160	24.	1
Fluorene	1000		ug/kg	210	20.	1
Phenanthrene	2600		ug/kg	120	25.	1
Dibenzo(a,h)anthracene	ND		ug/kg	120	24.	1
Indeno(1,2,3-cd)pyrene	ND		ug/kg	160	29.	1
Pyrene	120		ug/kg	120	20.	1
Biphenyl	ND		ug/kg	470	48.	1
4-Chloroaniline	ND		ug/kg	210	38.	1
2-Nitroaniline	ND		ug/kg	210	40.	1
3-Nitroaniline	ND		ug/kg	210	39.	1
4-Nitroaniline	ND		ug/kg	210	86.	1
Dibenzofuran	640		ug/kg	210	20.	1
2-Methylnaphthalene	ND		ug/kg	250	25.	1
1,2,4,5-Tetrachlorobenzene	ND		ug/kg	210	22.	1
Acetophenone	ND		ug/kg	210	26.	1
2,4,6-Trichlorophenol	ND		ug/kg	120	39.	1
p-Chloro-m-cresol	ND		ug/kg	210	31.	1
2-Chlorophenol	ND		ug/kg	210	24.	1
2,4-Dichlorophenol	ND		ug/kg	190	33.	1
2,4-Dimethylphenol	ND		ug/kg	210	68.	1
2-Nitrophenol	ND		ug/kg	450	78.	1
4-Nitrophenol	ND		ug/kg	290	84.	1
2,4-Dinitrophenol	ND		ug/kg	990	96.	1
4,6-Dinitro-o-cresol	ND		ug/kg	540	99.	1
Pentachlorophenol	ND		ug/kg	160	46.	1
Phenol	ND		ug/kg	210	31.	1
2-Methylphenol	ND		ug/kg	210	32.	1
3-Methylphenol/4-Methylphenol	ND		ug/kg	300	32.	1
2,4,5-Trichlorophenol	ND		ug/kg	210	40.	1
Carbazole	ND		ug/kg	210	20.	1
Atrazine	ND		ug/kg	160	72.	1
Benzaldehyde	ND		ug/kg	270	56.	1

05/10/19

Project Name: 641 WEST AVE (NIAGARA COUNTY) Lab Number: L1917600

Project Number: Not Specified

SAMPLE RESULTS

Date Collected: 04/29/19 09:00

Report Date:

Lab ID: L1917600-02 DUP (EB-1) Client ID: Date Received: 04/29/19

641 WEST AVE., LOCKPORT, NY Sample Location: Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS	- Westborough Lab						
Caprolactam	ND		ug/kg	210	63.	1	
2,3,4,6-Tetrachlorophenol	ND		ug/kg	210	42.	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	66	25-120
Phenol-d6	67	10-120
Nitrobenzene-d5	101	23-120
2-Fluorobiphenyl	76	30-120
2,4,6-Tribromophenol	79	10-136
4-Terphenyl-d14	74	18-120

Project Name: Lab Number: 641 WEST AVE (NIAGARA COUNTY) L1917600

Project Number: Report Date: Not Specified 05/10/19

SAMPLE RESULTS

Lab ID: L1917600-03 Date Collected: 04/29/19 10:20

Date Received: 04/29/19 Client ID: EB-3

Sample Location: 641 WEST AVE., LOCKPORT, NY Field Prep: Not Specified

Sample Depth:

Extraction Method: EPA 3546 Matrix: Soil **Extraction Date:** 05/05/19 13:57

Analytical Method: 1,8270D Analytical Date: 05/09/19 18:24

Analyst: JG 88% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - V	Vestborough Lab					
Acenaphthene	ND		ug/kg	150	19.	1
Hexachlorobenzene	ND		ug/kg	110	21.	1
Bis(2-chloroethyl)ether	ND		ug/kg	170	25.	1
2-Chloronaphthalene	ND		ug/kg	190	18.	1
3,3'-Dichlorobenzidine	ND		ug/kg	190	50.	1
2,4-Dinitrotoluene	ND		ug/kg	190	37.	1
2,6-Dinitrotoluene	ND		ug/kg	190	32.	1
Fluoranthene	ND		ug/kg	110	21.	1
4-Chlorophenyl phenyl ether	ND		ug/kg	190	20.	1
4-Bromophenyl phenyl ether	ND		ug/kg	190	28.	1
Bis(2-chloroisopropyl)ether	ND		ug/kg	220	32.	1
Bis(2-chloroethoxy)methane	ND		ug/kg	200	19.	1
Hexachlorobutadiene	ND		ug/kg	190	27.	1
Hexachlorocyclopentadiene	ND		ug/kg	530	170	1
Hexachloroethane	ND		ug/kg	150	30.	1
Isophorone	ND		ug/kg	170	24.	1
Naphthalene	210		ug/kg	190	23.	1
Nitrobenzene	ND		ug/kg	170	28.	1
NDPA/DPA	ND		ug/kg	150	21.	1
n-Nitrosodi-n-propylamine	ND		ug/kg	190	29.	1
Bis(2-ethylhexyl)phthalate	ND		ug/kg	190	64.	1
Butyl benzyl phthalate	ND		ug/kg	190	47.	1
Di-n-butylphthalate	ND		ug/kg	190	35.	1
Di-n-octylphthalate	ND		ug/kg	190	63.	1
Diethyl phthalate	ND		ug/kg	190	17.	1
Dimethyl phthalate	ND		ug/kg	190	39.	1
Benzo(a)anthracene	ND		ug/kg	110	21.	1
Benzo(a)pyrene	ND		ug/kg	150	45.	1

Project Name: 641 WEST AVE (NIAGARA COUNTY) Lab Number: L1917600

Project Number: Not Specified Report Date: 05/10/19

SAMPLE RESULTS

Lab ID: L1917600-03 Date Collected: 04/29/19 10:20

Client ID: EB-3 Date Received: 04/29/19

Sample Location: 641 WEST AVE., LOCKPORT, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - V	Vestborough Lab					
Benzo(b)fluoranthene	ND		ug/kg	110	31.	1
Benzo(k)fluoranthene	ND		ug/kg	110	30.	1
Chrysene	ND		ug/kg	110	19.	1
Acenaphthylene	ND		ug/kg	150	29.	1
Anthracene	ND		ug/kg	110	36.	1
Benzo(ghi)perylene	ND		ug/kg	150	22.	1
Fluorene	89	J	ug/kg	190	18.	1
Phenanthrene	71	J	ug/kg	110	23.	1
Dibenzo(a,h)anthracene	ND		ug/kg	110	22.	1
Indeno(1,2,3-cd)pyrene	ND		ug/kg	150	26.	1
Pyrene	23	J	ug/kg	110	18.	1
Biphenyl	ND		ug/kg	420	43.	1
4-Chloroaniline	ND		ug/kg	190	34.	1
2-Nitroaniline	ND		ug/kg	190	36.	1
3-Nitroaniline	ND		ug/kg	190	35.	1
4-Nitroaniline	ND		ug/kg	190	77.	1
Dibenzofuran	48	J	ug/kg	190	18.	1
2-Methylnaphthalene	ND		ug/kg	220	22.	1
1,2,4,5-Tetrachlorobenzene	ND		ug/kg	190	19.	1
Acetophenone	ND		ug/kg	190	23.	1
2,4,6-Trichlorophenol	ND		ug/kg	110	35.	1
p-Chloro-m-cresol	ND		ug/kg	190	28.	1
2-Chlorophenol	ND		ug/kg	190	22.	1
2,4-Dichlorophenol	ND		ug/kg	170	30.	1
2,4-Dimethylphenol	ND		ug/kg	190	61.	1
2-Nitrophenol	ND		ug/kg	400	70.	1
4-Nitrophenol	ND		ug/kg	260	76.	1
2,4-Dinitrophenol	ND		ug/kg	890	87.	1
4,6-Dinitro-o-cresol	ND		ug/kg	480	89.	1
Pentachlorophenol	ND		ug/kg	150	41.	1
Phenol	ND		ug/kg	190	28.	1
2-Methylphenol	ND		ug/kg	190	29.	1
3-Methylphenol/4-Methylphenol	ND		ug/kg	270	29.	1
2,4,5-Trichlorophenol	ND		ug/kg	190	36.	1
Carbazole	ND		ug/kg	190	18.	1
Atrazine	ND		ug/kg	150	65.	1
Benzaldehyde	ND		ug/kg	240	50.	1

05/10/19

Project Name: 641 WEST AVE (NIAGARA COUNTY) Lab Number: L1917600

Project Number: Not Specified

SAMPLE RESULTS

Report Date:

L1917600-03 Client ID: EB-3

Sample Location: 641 WEST AVE., LOCKPORT, NY Date Collected: 04/29/19 10:20

Date Received: 04/29/19

Field Prep: Not Specified

Sample Depth:

Lab ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - We	estborough Lab						
Caprolactam	ND		ug/kg	190	57.	1	
2,3,4,6-Tetrachlorophenol	ND		ug/kg	190	38.	1	

75		25-120	
75		10-120	
130	Q	23-120	
74		30-120	
87		10-136	
79		18-120	
	75 130 74 87	75 130 Q 74 87	75 10-120 130 Q 23-120 74 30-120 87 10-136

L1917600

05/10/19

Project Name: Lab Number: 641 WEST AVE (NIAGARA COUNTY)

Project Number: Not Specified

SAMPLE RESULTS

Date Collected: 04/29/19 10:40

Report Date:

Lab ID: L1917600-04 Date Received: 04/29/19 Client ID: EB-4

Sample Location: 641 WEST AVE., LOCKPORT, NY Field Prep: Not Specified

Sample Depth:

Analytical Date:

Extraction Method: EPA 3546 Matrix: Soil **Extraction Date:** 05/05/19 13:57 Analytical Method: 1,8270D

Analyst: JG 91% Percent Solids:

05/09/19 17:36

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - V	Vestborough Lab					
Acenaphthene	ND		ug/kg	140	18.	1
Hexachlorobenzene	ND		ug/kg	110	20.	1
Bis(2-chloroethyl)ether	ND		ug/kg	160	24.	1
2-Chloronaphthalene	ND		ug/kg	180	18.	1
3,3'-Dichlorobenzidine	ND		ug/kg	180	48.	1
2,4-Dinitrotoluene	ND		ug/kg	180	36.	1
2,6-Dinitrotoluene	ND		ug/kg	180	31.	1
Fluoranthene	ND		ug/kg	110	20.	1
4-Chlorophenyl phenyl ether	ND		ug/kg	180	19.	1
4-Bromophenyl phenyl ether	ND		ug/kg	180	27.	1
Bis(2-chloroisopropyl)ether	ND		ug/kg	210	30.	1
Bis(2-chloroethoxy)methane	ND		ug/kg	190	18.	1
Hexachlorobutadiene	ND		ug/kg	180	26.	1
Hexachlorocyclopentadiene	ND		ug/kg	510	160	1
Hexachloroethane	ND		ug/kg	140	29.	1
Isophorone	ND		ug/kg	160	23.	1
Naphthalene	340		ug/kg	180	22.	1
Nitrobenzene	ND		ug/kg	160	26.	1
NDPA/DPA	ND		ug/kg	140	20.	1
n-Nitrosodi-n-propylamine	ND		ug/kg	180	28.	1
Bis(2-ethylhexyl)phthalate	ND		ug/kg	180	62.	1
Butyl benzyl phthalate	ND		ug/kg	180	45.	1
Di-n-butylphthalate	ND		ug/kg	180	34.	1
Di-n-octylphthalate	ND		ug/kg	180	61.	1
Diethyl phthalate	ND		ug/kg	180	16.	1
Dimethyl phthalate	ND		ug/kg	180	38.	1
Benzo(a)anthracene	ND		ug/kg	110	20.	1
Benzo(a)pyrene	ND		ug/kg	140	44.	1

Project Name: 641 WEST AVE (NIAGARA COUNTY) Lab Number: L1917600

Project Number: Not Specified Report Date: 05/10/19

SAMPLE RESULTS

Lab ID: L1917600-04 Date Collected: 04/29/19 10:40

Client ID: EB-4 Date Received: 04/29/19
Sample Location: 641 WEST AVE., LOCKPORT, NY Field Prep: Not Specified

Dibenzo(a,h)anthracene ND ug/kg 110 21. 1 1 1 1 1 1 1 1 1	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Benzo(k)fluoranthene	Semivolatile Organics by GC/MS -	Westborough Lab					
Benzo(k)fluoranthene	Renzo(h)fluoranthene	ND		ua/ka	110	30	1
Chryseine ND ug/kg 110 19 1 Acenaphtylene ND ug/kg 140 28 1 Anthracene ND ug/kg 140 28 1 Anthracene ND ug/kg 140 21 1 Benzo(ghi)perylene ND ug/kg 180 17 1 Fluorene ND ug/kg 110 22 1 Pheranthree ND ug/kg 110 22 1 Diberaco(a, hanthracene ND ug/kg 140 25 1 Indenot (1, 23 - 6)pyrane ND ug/kg 140 25 1 Pyrane ND ug/kg 140 25 1 Pyrane ND ug/kg 110 18 1 4-Chororaniline ND ug/kg 110 41 1 2-Nitroaniline ND ug/kg 180 34 1 4-Nitroaniline ND<							
Acenaphthylene ND ug/kg 140 28. 1 Anthracene ND ug/kg 110 35. 1 Benzo(gh)perylene ND ug/kg 140 21. 1 Flororene ND ug/kg 140 21. 1 Phenanthrene ND ug/kg 180 17. 1 Dibenzo(a,h)anthracene ND ug/kg 110 22. 1 Dibenzo(a,h)anthracene ND ug/kg 110 22. 1 Dibenzo(a,h)anthracene ND ug/kg 110 22. 1 Dibenzo(a,h)anthracene ND ug/kg 110 25. 1 Dibenzo(a,h)anthracene ND ug/kg 140 25. 1 Dibenzo(a,h)anthracene ND ug/kg 140 25. 1 Biphenyl ND ug/kg 180 32. 1 Company ND ug/kg 180 32. 1 Company ND ug/kg 180 32. 1 Company ND ug/kg 180 34. 1 Company ND ug/kg 180 17. 1 Company ND ug/kg 180 17. 1 Company ND ug/kg 180 17. 1 Company ND ug/kg 180 19. 1 Company ND ug/kg 180 19. 1 Company ND ug/kg 180 19. 1 Company ND ug/kg 180 22. 1 Company ND ug/kg 180 27. 1 Company ND ug/kg 180 28. 1 Company ND							
Anthracene ND ug/kg 110 35. 1 Benzs(ghl)perylene ND ug/kg 140 21. 1 Fluorene ND ug/kg 180 17. 1 Phenanthrene ND ug/kg 110 22. 1 Dibenzo(a,h)anthracene ND ug/kg 110 22. 1 Dibenzo(a,h)anthracene ND ug/kg 110 22. 1 Dibenzo(a,h)anthracene ND ug/kg 110 21. 1 Indeno(1,2,3-od)pyrene ND ug/kg 110 25. 1 Dibenzo(a,h)anthracene ND ug/kg 110 8. 1 Dibenzo(a,h)anthracene ND ug/kg 110 8. 1 Dibenzo(a,h)anthracene ND ug/kg 140 25. 1 Dibenzo(a,h)anthracene ND ug/kg 110 8. 1 Dibenzo(a,h)anthracene ND ug/kg 180 32. 1 Dibenzo(a,h)anthracene ND ug/kg 180 32. 1 Dibenzo(a,h)anthracene ND ug/kg 180 34. 1 Dibenzo(a,h)anthracene ND ug/kg 180 17. 1 Dibenzo(a,h)anthracene ND ug/kg 180 19. 1 Dibenzo(a,h)anthracene ND ug/kg 180 22. 1 Dibenzo(a,h)anthracene ND ug/kg 180 27. 1 Dibenzo(a,h)anthracene ND ug/kg 18	<u> </u>						
Benzo(ghi)perylene ND ug/kg 140 21. 1 Fluorone ND ug/kg 180 17. 1 Phenanthrene ND ug/kg 110 22. 1 Diberzo(a,lyanthracene ND ug/kg 110 21. 1 Indenot(1,2,3-cd)pyrene ND ug/kg 110 18. 1 Pyrene ND ug/kg 410 41. 1 Pyrene ND ug/kg 410 41. 1 4-Chloroaniline ND ug/kg 180 32. 1 4-Chloroaniline ND ug/kg 180 34. 1 4-Altroaniline ND ug/kg 180 74. 1 4-Altroaniline ND ug/kg 180 74. 1 2-Altroaniline ND ug/kg 180 74. 1 2-Altroaniline ND ug/kg 180 74. 1 2-Altroan							
Fluorene							
Phenanthrene ND ug/kg 110 22. 1 Diberac(a,h)anthracene ND ug/kg 110 21. 1 Indenot(1,2,3-cd)pyrene ND ug/kg 140 25. 1 Pyrene ND ug/kg 140 25. 1 Biphenyl ND ug/kg 40 41. 1 4-Chloroaniline ND ug/kg 180 32. 1 4-Chloroaniline ND ug/kg 180 34. 1 3-Nitroaniline ND ug/kg 180 34. 1 4-Nitroaniline ND ug/kg 180 74. 1 4-Nitroaniline ND ug/kg 180 74. 1 4-Nitr							
Dibenzo(a,h)anthracene ND ug/kg 110 21. 1 Indeno(1,2,3-cd)pyrene ND ug/kg 140 25. 1 Pyrene ND ug/kg 110 18. 1 Biphenyl ND ug/kg 410 41. 1 4-Chloroaniline ND ug/kg 180 32. 1 2-Nitroaniline ND ug/kg 180 34. 1 3-Nitroaniline ND ug/kg 180 34. 1 4-Nitroaniline ND ug/kg 180 34. 1 2-Nitroaniline ND ug/kg 180 34. 1 2-Nit	Phenanthrene	ND				22.	1
Indeno(1,2,3-cd)pyrene	Dibenzo(a,h)anthracene	ND			110	21.	1
Pyrene ND ug/kg 110 18. 1 Biphenyl ND ug/kg 410 41. 1 4-Chioraniline ND ug/kg 180 32. 1 2-Nitroaniline ND ug/kg 180 34. 1 3-Nitroaniline ND ug/kg 180 34. 1 4-Nitroaniline ND ug/kg 180 74. 1 4-Nitrophenol ND ug/kg 180 74. 1 2-A-Bricholrophenol <td></td> <td>ND</td> <td></td> <td></td> <td>140</td> <td>25.</td> <td>1</td>		ND			140	25.	1
Bipheny ND	Pyrene	ND			110	18.	1
A-Chloroaniline ND ug/kg 180 32. 1 2-Nitroaniline ND ug/kg 180 34. 1 3-Nitroaniline ND ug/kg 180 34. 1 3-Nitroaniline ND ug/kg 180 34. 1 4-Nitroaniline ND ug/kg 180 74. 1 Dibenzofuran ND ug/kg 180 17. 1 Dibenzofuran ND ug/kg 180 17. 1 2-Methylnaphthalene 300 ug/kg 210 22. 1 1.2.4,5-Tertachlorobenzene ND ug/kg 180 22. 1 2.4,6-Trichlorophenol ND ug/kg 180 22. 1 2.4,6-Trichlorophenol ND ug/kg 180 22. 1 2.4-Dinttrophenol ND ug/kg 180 22. 1 2.4-Dinttrophenol ND ug/kg 180 27. 1 2.4-Dinttrophenol ND ug/kg 180 27. 1 2.4-Dintrophenol ND ug/kg 180 27. 1 2.4-Dintrophenol ND ug/kg 180 21. 1 2.4-Dintrophenol ND ug/kg 180 29. 1 2.4-Dintrophenol ND ug/kg 180 29. 1 2.4-Dintrophenol ND ug/kg 180 59. 1 2-Nitrophenol ND ug/kg 180 59. 1 2-Nitrophenol ND ug/kg 180 59. 1 2-Nitrophenol ND ug/kg 180 59. 1 4-Nitrophenol ND ug/kg 250 73. 1 4-Nitrophenol ND ug/kg 860 83. 1 4-Pentachlorophenol ND ug/kg 860 83. 1 4-Pentachlorophenol ND ug/kg 180 27. 1 2-Alentylphenol ND ug/kg 180 27. 1 2-Alentylphenol ND ug/kg 180 28. 1 2-Alentylphenol ND ug/kg 180 34. 1 2-Alentylphenol4-Methylphenol ND ug/kg 180 34. 1	Biphenyl	ND			410	41.	1
2-Nitroaniline ND ug/kg 180 34. 1 3-Nitroaniline ND ug/kg 180 34. 1 4-Nitroaniline ND ug/kg 180 74. 1 Dibenzofuran ND ug/kg 180 17. 1 2-Methylnaphthalene 300 ug/kg 180 17. 1 2-Methylnaphthalene ND ug/kg 180 17. 1 2-Methylnaphthalene ND ug/kg 180 19. 1 2-4.6-Trichlorophenole ND ug/kg 180 22. 1 4-Rectophenone ND ug/kg 180 22. 1 2-4.6-Trichlorophenol ND ug/kg 180 22. 1 2-Chlorophenol ND ug/kg 180 22. 1 2-Chlorophenol ND ug/kg 180 27. 1 2-Chlorophenol ND ug/kg 180 27. 1 2-Chlorophenol ND ug/kg 180 21. 1 2-A-Dichlorophenol ND ug/kg 180 27. 1 2-Chlorophenol ND ug/kg 180 59. 1 2-Nitrophenol ND ug/kg 180 59. 1 2-Nitrophenol ND ug/kg 180 59. 1 2-Nitrophenol ND ug/kg 860 83. 1 2-Nitrophenol ND ug/kg 860 83. 1 4-Nitrophenol ND ug/kg 860 83. 1 4-Nitrophenol ND ug/kg 860 83. 1 4-Rectophenol ND ug/kg 860 86. 1 4-Rectophenol ND	4-Chloroaniline	ND			180	32.	1
3-Nitroaniline ND ug/kg 180 34. 1 4-Nitroaniline ND ug/kg 180 74. 1 Dibenzofuran ND ug/kg 180 17. 1 2-Methylnaphthalene 300 ug/kg 210 22. 1 1,2.4,5-Tetrachlorobenzene ND ug/kg 180 19. 1 Acetophenone ND ug/kg 180 22. 1 2,4,6-Ticklorophenol ND ug/kg 110 34. 1 2,4,6-Ticklorophenol ND ug/kg 180 27. 1 2,4,6-Ticklorophenol ND ug/kg 180 27. 1 2-Chlorophenol ND ug/kg 180 21. 1 2-Chlorophenol ND ug/kg 180 29. 1 2,4-Dinitrophenol ND ug/kg 390 67. 1 4-Nitrophenol ND ug/kg 860 83. 1 <	2-Nitroaniline	ND			180	34.	1
4-Nitroaniline ND ug/kg 180 74. 1 Dibenzofuran ND ug/kg 180 17. 1 2-Methylnaphthalene 300 ug/kg 210 22. 1 1,2,4,5-Tetrachlorobenzene ND ug/kg 180 19. 1 2,4,6-Tidhlorophenol ND ug/kg 180 22. 1 2,4,6-Tidhlorophenol ND ug/kg 180 27. 1 2,4,6-Tidhlorophenol ND ug/kg 180 27. 1 2,4,6-Tidhlorophenol ND ug/kg 180 27. 1 2,4-Dichlorophenol ND ug/kg 180 21. 1 2,4-Dichlorophenol ND ug/kg 180 21. 1 2,4-Dichlorophenol ND ug/kg 180 59. 1 2,4-Dimitrophenol ND ug/kg 180 59. 1 2,4-Dimitrophenol ND ug/kg 180 59. 1 2,4-Dimitrophenol ND ug/kg 390 67. 1 4.6-Dinitro-o-cresol ND ug/kg 860 83. 1 2,4-Dinitrophenol ND ug/kg 860 83. 1 2,4-Dinitrophenol ND ug/kg 180 27. 1 2-Methylphenol ND ug/kg 180 34. 1 2-Al-Tinitrophenol ND ug/kg 180 34. 1	3-Nitroaniline	ND			180	34.	1
2-Methylnaphthalene 300 ug/kg 210 22. 1 1,2,4,5-Tetrachlorobenzene ND ug/kg 180 19. 1 Acetophenone ND ug/kg 180 22. 1 2,4,6-Trichlorophenol ND ug/kg 110 34. 1 2,4,6-Trichlorophenol ND ug/kg 180 27. 1 2-Chlorophenol ND ug/kg 180 27. 1 2-Chlorophenol ND ug/kg 160 29. 1 2,4-Dinethylphenol ND ug/kg 180 59. 1 2,4-Dinethylphenol ND ug/kg 390 67. 1 4-Nitrophenol ND ug/kg 250 73. 1 4,6-Dinitro-o-cresol ND ug/kg 860 83. 1 4,6-Dinitro-o-cresol ND ug/kg 460 86. 1 Pentachlorophenol ND ug/kg 180 27.	4-Nitroaniline	ND			180	74.	1
2-Methylnaphthalene 300 ug/kg 210 22. 1 1,2,4,5-Tetrachlorobenzene ND ug/kg 180 19. 1 Acetophenone ND ug/kg 180 22. 1 2,4,6-Trichlorophenol ND ug/kg 110 34. 1 2,4,6-Trichlorophenol ND ug/kg 180 27. 1 2-Chlorophenol ND ug/kg 180 27. 1 2-Chlorophenol ND ug/kg 180 21. 1 2,4-Dinethylphenol ND ug/kg 160 29. 1 2,4-Dinethylphenol ND ug/kg 180 59. 1 2-Nitrophenol ND ug/kg 390 67. 1 4-Nitrophenol ND ug/kg 250 73. 1 4,6-Dinitro-o-cresol ND ug/kg 460 86. 1 Pentachlorophenol ND ug/kg 140 39. 1 Phenol ND ug/kg 180 27. 1 <	Dibenzofuran	ND		ug/kg	180	17.	1
Acetophenone ND ug/kg 180 22. 1 2,4,6-Trichlorophenol ND ug/kg 110 34. 1 2,4,6-Trichlorophenol ND ug/kg 180 27. 1 2,4-Dichloro-m-cresol ND ug/kg 180 21. 1 2,4-Dichlorophenol ND ug/kg 160 29. 1 2,4-Dichlorophenol ND ug/kg 180 59. 1 2,4-Dimethylphenol ND ug/kg 390 67. 1 2-Nitrophenol ND ug/kg 390 67. 1 4-Nitrophenol ND ug/kg 460 83. 1 4,6-Dinitro-cresol ND ug/kg 460 86. 1 Pentachlorophenol ND ug/kg 140 39. 1 Phenol ND ug/kg 140 39. 1 Phenol ND ug/kg 180 27. 1 2-Methylphenol ND ug/kg 180 27. 1 2-Methylphenol ND ug/kg 180 27. 1 3-Methylphenol ND ug/kg 180 28. 1 3-Methylphenol/4-Methylphenol ND ug/kg 180 28. 1 2,4,5-Trichlorophenol ND ug/kg 180 34. 1 Carbazole ND ug/kg 180 34. 1 Carbazole ND ug/kg 180 17. 1 Atrazine ND ug/kg 180 17. 1	2-Methylnaphthalene	300			210	22.	1
2,4,6-Trichlorophenol ND	1,2,4,5-Tetrachlorobenzene	ND		ug/kg	180	19.	1
P-Chloro-m-cresol ND	Acetophenone	ND		ug/kg	180	22.	1
2-Chlorophenol ND ug/kg 180 21. 1 2,4-Dichlorophenol ND ug/kg 160 29. 1 2,4-Dimethylphenol ND ug/kg 180 59. 1 2-Nitrophenol ND ug/kg 390 67. 1 4-Nitrophenol ND ug/kg 250 73. 1 2,4-Dinitrophenol ND ug/kg 860 83. 1 2,4-Dinitrophenol ND ug/kg 860 83. 1 4,6-Dinitro-o-cresol ND ug/kg 460 86. 1 Pentachlorophenol ND ug/kg 140 39. 1 Phenol ND ug/kg 180 27. 1 2-Methylphenol ND ug/kg 180 28. 1 3-Methylphenol/4-Methylphenol ND ug/kg 180 28. 1 2,4,5-Trichlorophenol ND ug/kg 180 34. 1 Carbazole ND ug/kg 180 17. 1 Altrazine ND ug/kg 180 17. 1	2,4,6-Trichlorophenol	ND		ug/kg	110	34.	1
2,4-Dichlorophenol ND ug/kg 160 29. 1 2,4-Dimethylphenol ND ug/kg 180 59. 1 2-Nitrophenol ND ug/kg 390 67. 1 4-Nitrophenol ND ug/kg 250 73. 1 2,4-Dinitrophenol ND ug/kg 860 83. 1 4,6-Dinitro-o-cresol ND ug/kg 460 86. 1 Pentachlorophenol ND ug/kg 140 39. 1 Phenol ND ug/kg 180 27. 1 2-Methylphenol ND ug/kg 180 28. 1 3-Methylphenol/4-Methylphenol ND ug/kg 260 28. 1 2,4,5-Trichlorophenol ND ug/kg 180 34. 1 Carbazole ND ug/kg 180 37. 1 Atrazine ND ug/kg 140 62. 1	p-Chloro-m-cresol	ND		ug/kg	180	27.	1
2,4-Dimethylphenol ND ug/kg 180 59. 1 2-Nitrophenol ND ug/kg 390 67. 1 4-Nitrophenol ND ug/kg 250 73. 1 2,4-Dinitrophenol ND ug/kg 860 83. 1 4,6-Dinitro-o-cresol ND ug/kg 460 86. 1 Pentachlorophenol ND ug/kg 140 39. 1 Phenol ND ug/kg 180 27. 1 2-Methylphenol ND ug/kg 180 28. 1 3-Methylphenol/4-Methylphenol ND ug/kg 260 28. 1 2,4,5-Trichlorophenol ND ug/kg 180 34. 1 Carbazole ND ug/kg 180 17. 1 Atrazine ND ug/kg 140 62. 1	2-Chlorophenol	ND		ug/kg	180	21.	1
2-Nitrophenol ND ug/kg 390 67. 1 4-Nitrophenol ND ug/kg 250 73. 1 2,4-Dinitrophenol ND ug/kg 860 83. 1 4,6-Dinitro-o-cresol ND ug/kg 460 86. 1 Pentachlorophenol ND ug/kg 140 39. 1 Phenol ND ug/kg 180 27. 1 2-Methylphenol ND ug/kg 180 27. 1 2-Methylphenol ND ug/kg 180 28. 1 3-Methylphenol/4-Methylphenol ND ug/kg 180 28. 1 2,4,5-Trichlorophenol ND ug/kg 180 34. 1 Carbazole ND ug/kg 180 34. 1 Carbazole ND ug/kg 180 34. 1 CArbazole ND ug/kg 180 34. 1	2,4-Dichlorophenol	ND		ug/kg	160	29.	1
4-Nitrophenol ND ug/kg 250 73. 1 2,4-Dinitrophenol ND ug/kg 860 83. 1 4,6-Dinitro-o-cresol ND ug/kg 460 86. 1 Pentachlorophenol ND ug/kg 140 39. 1 Phenol ND ug/kg 180 27. 1 2-Methylphenol ND ug/kg 180 28. 1 3-Methylphenol/4-Methylphenol ND ug/kg 260 28. 1 2,4,5-Trichlorophenol ND ug/kg 180 34. 1 Carbazole ND ug/kg 180 17. 1 Atrazine ND ug/kg 180 17. 1	2,4-Dimethylphenol	ND		ug/kg	180	59.	1
2,4-Dinitrophenol ND ug/kg 860 83. 1 4,6-Dinitro-o-cresol ND ug/kg 460 86. 1 Pentachlorophenol ND ug/kg 140 39. 1 Phenol ND ug/kg 180 27. 1 2-Methylphenol ND ug/kg 180 28. 1 3-Methylphenol/4-Methylphenol ND ug/kg 260 28. 1 2,4,5-Trichlorophenol ND ug/kg 180 34. 1 Carbazole ND ug/kg 180 17. 1 Atrazine ND ug/kg 140 62. 1	2-Nitrophenol	ND		ug/kg	390	67.	1
4,6-Dinitro-o-cresol ND ug/kg 460 86. 1 Pentachlorophenol ND ug/kg 140 39. 1 Phenol ND ug/kg 180 27. 1 2-Methylphenol ND ug/kg 180 28. 1 3-Methylphenol/4-Methylphenol ND ug/kg 260 28. 1 2,4,5-Trichlorophenol ND ug/kg 180 34. 1 Carbazole ND ug/kg 180 17. 1 Atrazine ND ug/kg 140 62. 1	4-Nitrophenol	ND		ug/kg	250	73.	1
Pentachlorophenol ND ug/kg 140 39. 1 Phenol ND ug/kg 180 27. 1 2-Methylphenol ND ug/kg 180 28. 1 3-Methylphenol/4-Methylphenol ND ug/kg 260 28. 1 2,4,5-Trichlorophenol ND ug/kg 180 34. 1 Carbazole ND ug/kg 180 17. 1 Atrazine ND ug/kg 140 62. 1	2,4-Dinitrophenol	ND		ug/kg	860	83.	1
Phenol ND ug/kg 180 27. 1 2-Methylphenol ND ug/kg 180 28. 1 3-Methylphenol/4-Methylphenol ND ug/kg 260 28. 1 2,4,5-Trichlorophenol ND ug/kg 180 34. 1 Carbazole ND ug/kg 180 17. 1 Atrazine ND ug/kg 140 62. 1	4,6-Dinitro-o-cresol	ND		ug/kg	460	86.	1
2-Methylphenol ND ug/kg 180 28. 1 3-Methylphenol/4-Methylphenol ND ug/kg 260 28. 1 2,4,5-Trichlorophenol ND ug/kg 180 34. 1 Carbazole ND ug/kg 180 17. 1 Atrazine ND ug/kg 140 62. 1	Pentachlorophenol	ND		ug/kg	140	39.	1
3-Methylphenol/4-Methylphenol ND ug/kg 260 28. 1 2,4,5-Trichlorophenol ND ug/kg 180 34. 1 Carbazole ND ug/kg 180 17. 1 Atrazine ND ug/kg 140 62. 1	Phenol	ND		ug/kg	180	27.	1
2,4,5-Trichlorophenol ND ug/kg 180 34. 1 Carbazole ND ug/kg 180 17. 1 Atrazine ND ug/kg 140 62. 1	2-Methylphenol	ND		ug/kg	180	28.	1
Carbazole ND ug/kg 180 17. 1 Atrazine ND ug/kg 140 62. 1	3-Methylphenol/4-Methylphenol	ND		ug/kg	260	28.	1
Atrazine ND ug/kg 140 62. 1	2,4,5-Trichlorophenol	ND		ug/kg	180	34.	1
-5 5	Carbazole	ND		ug/kg	180	17.	1
Benzaldehyde ND ug/kg 240 48. 1	Atrazine	ND		ug/kg	140	62.	1
	Benzaldehyde	ND		ug/kg	240	48.	1

Project Name: 641 WEST AVE (NIAGARA COUNTY) Lab Number: L1917600

Project Number: Not Specified

SAMPLE RESULTS

05/10/19

Report Date:

Lab ID: L1917600-04

Client ID: EB-4 Sample Location: 641 WEST AVE., LOCKPORT, NY Date Collected: 04/29/19 10:40

Date Received: 04/29/19

Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - W	estborough Lab						
Caprolactam	ND		ug/kg	180	54.	1	
2,3,4,6-Tetrachlorophenol	ND		ug/kg	180	36.	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	58	25-120
Phenol-d6	64	10-120
Nitrobenzene-d5	71	23-120
2-Fluorobiphenyl	66	30-120
2,4,6-Tribromophenol	63	10-136
4-Terphenyl-d14	65	18-120

L1917600

05/10/19

Project Name: Lab Number: 641 WEST AVE (NIAGARA COUNTY)

Project Number: Not Specified

SAMPLE RESULTS

Date Collected: 04/29/19 11:05

Report Date:

Lab ID: L1917600-05 Date Received: 04/29/19 Client ID: EB-5

Sample Location: 641 WEST AVE., LOCKPORT, NY Field Prep: Not Specified

Sample Depth:

Analytical Date:

Extraction Method: EPA 3546 Matrix: Soil **Extraction Date:** 05/05/19 13:57 Analytical Method: 1,8270D

Analyst: JG 80% Percent Solids:

05/09/19 17:12

Hexachlorobenzene ND ug/kg 120 23. 1	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Hexachlorobenzene ND ug/kg 120 23. 1	Semivolatile Organics by GC/MS	- Westborough Lab					
Bis(2-chloroethyl)ether	Acenaphthene	ND		ug/kg	160	21.	1
2-Chloronaphthalene ND ug/kg 210 20. 1 3,3'-Dichlorobenzidine ND ug/kg 210 41. 1 2,4-Dinitrotoluene ND ug/kg 210 36. 1 Fluoranthene ND ug/kg 210 36. 1 Fluoranthene ND ug/kg 210 24. 1 4-Chlorophenyl phenyl ether ND ug/kg 210 22. 1 4-Bromophenyl phenyl ether ND ug/kg 210 32. 1 Bis(2-chloroisoproyl)ether ND ug/kg 250 35. 1 Bis(2-chloroisoproyl)ether ND ug/kg 250 36. 1 Bis(2-chloroisoproyl)ether ND ug/kg 250 35. 1 Bis(2-chloroisoproyl)ether ND ug/kg 200 21. 1 Hexachlorocytadiene ND ug/kg 210 30. 1 Hexachlorocytadiene ND ug/kg 590 190 1 Hexachlorocytalene ND ug/kg 190 27. 1 Naphthalene ND ug/kg 190 27. 1 Naphthalene ND ug/kg 190 31. 1 NDPA/DPA ND ug/kg 190 31. 1 NDPA/DPA ND ug/kg 190 31. 1 NDPA/DPA ND ug/kg 210 32. 1 Bis(2-chlyropylamine ND ug/kg 210 32. 1 Bis(2-chlyropylamine ND ug/kg 210 32. 1 Din-n-butyphthalate ND ug/kg 210 72. 1 Bis(2-chlyropylamine ND ug/kg 210 72. 1 Din-n-butyphthalate ND ug/kg 210 70. 1 Din-thutyphthalate ND ug/kg 210 44. 1 Benzo(a)anthracene	Hexachlorobenzene	ND		ug/kg	120	23.	1
3,3*Dichlorobenzidine ND ug/kg 210 55. 1 2,4*Dinitrotoluene ND ug/kg 210 41. 1 2,6*Dinitrotoluene ND ug/kg 210 36. 1 Fluoranthene ND ug/kg 120 24. 1 4*Chlorophenyl phenyl ether ND ug/kg 210 32. 1 4*Bromophenyl phenyl ether ND ug/kg 210 32. 1 4*Bromophenyl phenyl ether ND ug/kg 210 32. 1 4*Bromophenyl phenyl ether ND ug/kg 250 35. 1 Bis(2-chloroisopropyl)ether ND ug/kg 250 35. 1 Bis(2-chlorotobtadiene ND ug/kg 250 35. 1 Hexachlorocydopentadiene ND ug/kg 210 30. 1 Hexachlorocydopentadiene ND ug/kg 210 30. 1 Hexachlorocydopentadiene ND ug/kg 160 34. 1 Isophorone ND ug/kg 160 34. 1 Isophorone ND ug/kg 190 27. 1 Naphthalene ND ug/kg 190 27. 1 Naphthalene ND ug/kg 190 31. 1 NITrobenzene ND ug/kg 190 31. 1 NIPPA/DPA ND ug/kg 160 24. 1 NIPPA/DPA ND ug/kg 210 32. 1 Bis(2-ethylhexyl)phthalate ND ug/kg 210 32. 1 Bis(2-ethylhexyl)phthalate ND ug/kg 210 32. 1 Di-n-butylphthalate ND ug/kg 210 32. 1 Di-n-butylphthalate ND ug/kg 210 39. 1 Di-n-butylphthalate ND ug/kg 210 44. 1 Diethyl phthalate ND ug/kg 210 44. 1	Bis(2-chloroethyl)ether	ND		ug/kg	190	28.	1
2.4-Dinitrotoluene ND ug/kg 210 41. 1 2.6-Dinitrotoluene ND ug/kg 210 36. 1 Fluoranthene ND ug/kg 120 24. 1 4-Chlorophenyl phenyl ether ND ug/kg 210 32. 1 4-Bromophenyl phenyl ether ND ug/kg 210 32. 1 Bis(2-chloriosopropyl)ether ND ug/kg 250 35. 1 Bis(2-chlorosopropyl)ether ND ug/kg 150 34. 1 Bis(2-chlorosopropyl)ether ND ug/kg 150 35. 1 Bis(2-chlorosopropyl)ether ND ug/kg 150 35. 1 Bis(2-chlorosopropyl)ether ND ug/kg 150 35. 1 Bis(2-chlorosopropyl)ether ND ug/kg 210 32. 1 Bis(2-chlorosopropyl)ether ND ug/kg 210 32. 1 Bis(2-chlorosopropyl)ether ND ug/kg 210 32. 1 Bis(2-chlorosopropyl)ether ND ug/kg 210 39. 1 Di-n-butylphthalate ND ug/kg 210 44. 1 Benzo(a)anthracene ND ug/kg 210 44. 1	2-Chloronaphthalene	ND		ug/kg	210	20.	1
2,6-Dinitrotoluene ND ug/kg 210 36. 1 Fluoranthene ND ug/kg 120 24. 1 4-Chlorophenyl phenyl ether ND ug/kg 210 22. 1 4-Bromophenyl phenyl ether ND ug/kg 210 32. 1 Bis(2-chlorostopropyl)ether ND ug/kg 250 35. 1 Bis(2-chloroethoxy)methane ND ug/kg 220 21. 1 Hexachlorobutadiene ND ug/kg 210 30. 1 Hexachlorocyclopentadiene ND ug/kg 590 190 1 Hexachlorocyclopentadiene ND ug/kg 590 190 1 Hexachlorocyclopentadiene ND ug/kg 160 34. 1 Isophorone ND ug/kg 190 37. 1 Naphthalene ND ug/kg 190 27. 1 NPAPADPA ND ug/kg 190 31. 1 NPAPADPA ND ug/kg 210 <	3,3'-Dichlorobenzidine	ND		ug/kg	210	55.	1
Fluoranthene ND ug/kg 120 24. 1 4-Chlorophenyl phenyl ether ND ug/kg 210 22. 1 4-Bromophenyl phenyl ether ND ug/kg 210 32. 1 Bis(2-chloroisopropyl)ether ND ug/kg 250 35. 1 Bis(2-chloroisopropyl)ether ND ug/kg 150 34. 1 Bis(2-chloroisopropyl)ether ND ug/kg 160 34. 1 Bis(2-chloroisopropyl)ether ND ug/kg 190 27. 1 Bis(2-chloroisopropyl)ether ND ug/kg 190 31. 1 Bis(2-chloroisopropyl)ether ND ug/kg 210 32. 1 Bis(2-chloroisopropyl)ether ND ug/kg 210 32. 1 Bis(2-chloroisopropyl)ether ND ug/kg 210 32. 1 Bis(2-chloroisopropyl)ether ND ug/kg 210 39. 1 Di-n-butylphthalate ND ug/kg 210 39. 1 Di-n-butylphthalate ND ug/kg 210 70. 1 Di-n-butylphthalate ND ug/kg 210 19. 1 Di-n-octylphthalate ND ug/kg 210 19. 1 Di-n-octylphthalate ND ug/kg 210 44. 1 Benzo(a)anthracene ND ug/kg 210 44. 1	2,4-Dinitrotoluene	ND		ug/kg	210	41.	1
4-Chlorophenyl phenyl ether ND ug/kg 210 22. 1 4-Bromophenyl phenyl ether ND ug/kg 210 32. 1 Bis(2-chloroisopropyl)ether ND ug/kg 250 35. 1 Bis(2-chloroethoxy)methane ND ug/kg 220 21. 1 Hexachlorobutadiene ND ug/kg 220 21. 1 Hexachlorocyclopentadiene ND ug/kg 590 190 1 Hexachlorocyclopentadiene ND ug/kg 590 190 1 Hexachlorocyclopentadiene ND ug/kg 160 34. 1 Isophorone ND ug/kg 160 34. 1 Isophorone ND ug/kg 190 27. 1 Naphthalene ND ug/kg 190 27. 1 Naphthalene ND ug/kg 190 27. 1 Nitrobenzene ND ug/kg 190 31. 1 NITrobenzene ND ug/kg 190 31. 1 NDPA/DPA ND ug/kg 160 24. 1 N-Nitrosodi-n-propylamine ND ug/kg 160 24. 1 Bis(2-ethylhexyl)phthalate ND ug/kg 210 32. 1 Butyl benzyl phthalate ND ug/kg 210 32. 1 Di-n-butylphthalate ND ug/kg 210 39. 1 Di-n-butylphthalate ND ug/kg 210 39. 1 Di-n-octylphthalate ND ug/kg 210 39. 1 Di-n-octylphthalate ND ug/kg 210 19. 1 Diethyl phthalate ND ug/kg 210 19. 1 Dimethyl phthalate ND ug/kg 210 44. 1 Benzo(a)anthracene ND ug/kg 210 44. 1	2,6-Dinitrotoluene	ND		ug/kg	210	36.	1
A-Bromophenyl phenyl ether ND ug/kg 210 32. 1 Bis(2-chloroisopropyl)ether ND ug/kg 250 35. 1 Bis(2-chloroisopropyl)ether ND ug/kg 220 21. 1 Bis(2-chloroethoxy)methane ND ug/kg 220 21. 1 Hexachlorobutadiene ND ug/kg 210 30. 1 Hexachlorocyclopentadiene ND ug/kg 590 190 1 Hexachlorocyclopentadiene ND ug/kg 160 34. 1 Isophorone ND ug/kg 190 27. 1 Naphthalene ND ug/kg 190 27. 1 Naphthalene ND ug/kg 190 31. 1 NItrobenzene ND ug/kg 190 31. 1 NDPA/DPA ND ug/kg 190 31. 1 NDPA/DPA ND ug/kg 190 31. 1 Sup/ADPA ND ug/kg 190 31. 1 NDPA/DPA ND ug/kg 160 24. 1 In-Nitrosodi-n-propylamine ND ug/kg 210 32. 1 Bis(2-ethylhexyl)phthalate ND ug/kg 210 52. 1 Butyl benzyl phthalate ND ug/kg 210 52. 1 Di-n-butylphthalate ND ug/kg 210 39. 1 Di-n-butylphthalate ND ug/kg 210 70. 1 Di-n-butylphthalate ND ug/kg 210 70. 1 Diethyl phthalate ND ug/kg 210 19. 1 Diethyl phthalate ND ug/kg 210 19. 1 Diethyl phthalate ND ug/kg 210 44. 1 Benzo(a)anthracene ND ug/kg 210 44. 1 Benzo(a)anthracene	Fluoranthene	ND		ug/kg	120	24.	1
Bis(2-chloroisopropyl)ether ND	4-Chlorophenyl phenyl ether	ND		ug/kg	210	22.	1
Bis(2-chloroethoxy)methane ND ug/kg 220 21. 1 Hexachlorobutadiene ND ug/kg 210 30. 1 Hexachlorocyclopentadiene ND ug/kg 590 190 1 Hexachlorocyclopentadiene ND ug/kg 160 34. 1 Hexachlorocyclopentadiene ND ug/kg 160 34. 1 Isophorone ND ug/kg 190 27. 1 Naphthalene ND ug/kg 210 25. 1 Nitrobenzene ND ug/kg 190 31. 1 NDPA/DPA ND ug/kg 160 24. 1 n-Nitrosodi-n-propylamine ND ug/kg 210 32. 1 Bis(2-ethylhexyl)phthalate ND ug/kg 210 72. 1 Butyl benzyl phthalate ND ug/kg 210 39. 1 Di-n-butylphthalate ND ug/kg 210	4-Bromophenyl phenyl ether	ND		ug/kg	210	32.	1
Hexachlorobutadiene ND	Bis(2-chloroisopropyl)ether	ND		ug/kg	250	35.	1
Hexachlorocyclopentadiene ND	Bis(2-chloroethoxy)methane	ND		ug/kg	220	21.	1
Hexachloroethane ND	Hexachlorobutadiene	ND		ug/kg	210	30.	1
Sophorone ND	Hexachlorocyclopentadiene	ND		ug/kg	590	190	1
Naphthalene ND ug/kg 210 25. 1 Nitrobenzene ND ug/kg 190 31. 1 NDPA/DPA ND ug/kg 160 24. 1 n-Nitrosodi-n-propylamine ND ug/kg 210 32. 1 Bis(2-ethylhexyl)phthalate ND ug/kg 210 72. 1 Butyl benzyl phthalate ND ug/kg 210 52. 1 Di-n-butylphthalate ND ug/kg 210 39. 1 Di-n-cotylphthalate ND ug/kg 210 70. 1 Diethyl phthalate ND ug/kg 210 19. 1 Dimethyl phthalate ND ug/kg 210 44. 1 Benzo(a)anthracene ND ug/kg 120 23. 1	Hexachloroethane	ND		ug/kg	160	34.	1
Nitrobenzene ND ug/kg 190 31. 1 NDPA/DPA ND ug/kg 160 24. 1 n-Nitrosodi-n-propylamine ND ug/kg 210 32. 1 Bis(2-ethylhexyl)phthalate ND ug/kg 210 72. 1 Butyl benzyl phthalate ND ug/kg 210 52. 1 Di-n-butylphthalate ND ug/kg 210 39. 1 Di-n-cotylphthalate ND ug/kg 210 70. 1 Diethyl phthalate ND ug/kg 210 19. 1 Dimethyl phthalate ND ug/kg 210 44. 1 Benzo(a)anthracene ND ug/kg 120 23. 1	Isophorone	ND		ug/kg	190	27.	1
NDPA/DPA ND ug/kg 160 24. 1 n-Nitrosodi-n-propylamine ND ug/kg 210 32. 1 Bis(2-ethylhexyl)phthalate ND ug/kg 210 72. 1 Butyl benzyl phthalate ND ug/kg 210 52. 1 Di-n-butylphthalate ND ug/kg 210 39. 1 Di-n-octylphthalate ND ug/kg 210 70. 1 Diethyl phthalate ND ug/kg 210 19. 1 Dimethyl phthalate ND ug/kg 210 44. 1 Benzo(a)anthracene ND ug/kg 120 23. 1	Naphthalene	ND		ug/kg	210	25.	1
n-Nitrosodi-n-propylamine ND ug/kg 210 32. 1 Bis(2-ethylhexyl)phthalate ND ug/kg 210 72. 1 Butyl benzyl phthalate ND ug/kg 210 52. 1 Di-n-butylphthalate ND ug/kg 210 39. 1 Di-n-octylphthalate ND ug/kg 210 70. 1 Diethyl phthalate ND ug/kg 210 70. 1 Diethyl phthalate ND ug/kg 210 19. 1 Diethyl phthalate ND ug/kg 210 44. 1 Benzo(a)anthracene ND ug/kg 120 23. 1	Nitrobenzene	ND		ug/kg	190	31.	1
Bis(2-ethylhexyl)phthalate ND ug/kg 210 72. 1 Butyl benzyl phthalate ND ug/kg 210 52. 1 Di-n-butylphthalate ND ug/kg 210 39. 1 Di-n-octylphthalate ND ug/kg 210 70. 1 Diethyl phthalate ND ug/kg 210 19. 1 Dimethyl phthalate ND ug/kg 210 44. 1 Benzo(a)anthracene ND ug/kg 120 23. 1	NDPA/DPA	ND		ug/kg	160	24.	1
Butyl benzyl phthalate ND ug/kg 210 52. 1 Di-n-butylphthalate ND ug/kg 210 39. 1 Di-n-octylphthalate ND ug/kg 210 70. 1 Diethyl phthalate ND ug/kg 210 19. 1 Dimethyl phthalate ND ug/kg 210 44. 1 Benzo(a)anthracene ND ug/kg 120 23. 1	n-Nitrosodi-n-propylamine	ND		ug/kg	210	32.	1
Di-n-butylphthalate ND ug/kg 210 39. 1 Di-n-octylphthalate ND ug/kg 210 70. 1 Diethyl phthalate ND ug/kg 210 19. 1 Dimethyl phthalate ND ug/kg 210 44. 1 Benzo(a)anthracene ND ug/kg 120 23. 1	Bis(2-ethylhexyl)phthalate	ND		ug/kg	210	72.	1
Di-n-octylphthalate ND ug/kg 210 70. 1 Diethyl phthalate ND ug/kg 210 19. 1 Dimethyl phthalate ND ug/kg 210 44. 1 Benzo(a)anthracene ND ug/kg 120 23. 1	Butyl benzyl phthalate	ND		ug/kg	210	52.	1
Diethyl phthalate ND ug/kg 210 19. 1 Dimethyl phthalate ND ug/kg 210 44. 1 Benzo(a)anthracene ND ug/kg 120 23. 1	Di-n-butylphthalate	ND		ug/kg	210	39.	1
Dimethyl phthalate ND ug/kg 210 44. 1 Benzo(a)anthracene ND ug/kg 120 23. 1	Di-n-octylphthalate	ND		ug/kg	210	70.	1
Benzo(a)anthracene ND ug/kg 120 23. 1	Diethyl phthalate	ND		ug/kg	210	19.	1
-575	Dimethyl phthalate	ND		ug/kg	210	44.	1
Benzo(a)pyrene ND ug/kg 160 50. 1	Benzo(a)anthracene	ND		ug/kg	120	23.	1
	Benzo(a)pyrene	ND		ug/kg	160	50.	1

Project Name: 641 WEST AVE (NIAGARA COUNTY) Lab Number: L1917600

Project Number: Not Specified Report Date: 05/10/19

SAMPLE RESULTS

Lab ID: L1917600-05 Date Collected: 04/29/19 11:05

Client ID: EB-5 Date Received: 04/29/19 Sample Location: 641 WEST AVE., LOCKPORT, NY Field Prep: Not Specified

Semivolatile Organics by GC/MS - Westborough Lab Benzo(b)fluoranthene ND ug/kg 120 35. 1 Benzo(b)fluoranthene ND ug/kg 120 33. 1 Chrysene ND ug/kg 120 22. 1 Chrysene ND ug/kg 160 32. 1 Anthracone ND ug/kg 120 40. 1 Benzo(ghljearylene ND ug/kg 120 40. 1 Benzo(ghljearylene ND ug/kg 120 24. 1 Horone ND ug/kg 120 25. 1 Diberzo(sh)parthracene ND ug/kg 120 24. 1 Diberzo(sh)parthracene ND ug/kg 120 24. 1 Phranattrone ND ug/kg 120 24. 1 Diberzo(sh)parthracene ND ug/kg 120 24. 1 Christopheni ND ug/kg	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Benzo(k)fluoranthene	Semivolatile Organics by GC/MS -	Westborough Lab					
Benzo(k)fluoranthene	Renzo(h)fluoranthene	ND		ua/ka	120	35	1
Chrysene ND ug/kg 120 22. 1 Acenaphtylene ND ug/kg 100 32. 1 Anthracene ND ug/kg 160 32. 1 Encozighijberylene ND ug/kg 160 24. 1 Fluorene ND ug/kg 210 20. 1 Phenanthrene ND ug/kg 120 25. 1 Indenot (2,3-objyvene ND ug/kg 120 24. 1 Indenot (2,3-objyvene ND ug/kg 120 29. 1 Pyrene ND ug/kg 120 20. 1 Pyrene ND ug/kg 170 48. 1 4-Chicraniline ND ug/kg 210 38. 1 2-Nitroaniline ND ug/kg 210 39. 1 4-Nitroaniline ND ug/kg 210 39. 1 2-Nitrophiline							
Acenaphthylene ND ug/kg 160 32 1 Anthracene ND ug/kg 160 32 1 Benzo(ghijperylene ND ug/kg 160 24 1 Benzo(ghijperylene ND ug/kg 160 24 1 Entrouene ND ug/kg 160 24 1 Entrouene ND ug/kg 120 20 1 Entrouene ND ug/kg 120 25 1 Entrouene ND ug/kg 120 25 1 Entrouene ND ug/kg 120 25 1 Entrouene ND ug/kg 160 29 1 Entrouene ND ug/kg 160 29 1 Entrouene ND ug/kg 160 29 1 Entrouene ND ug/kg 120 20 1 Entrouene ND ug/kg 120 38 1 Entrouene ND ug/kg 120 39 1 Entrouene ND ug/kg 10 39 1 Entrouene ND ug/kg 10 39 1 Entrouene ND ug/kg 10 20 1 Entrouene ND ug/kg 10 33 1 Entrouene ND ug/kg 10 31 1 E							
Anthracene ND ug/kg 120 40. 1 Benzo(ghi)perylene ND ug/kg 160 24. 1 Fluorene ND ug/kg 210 20. 1 Fluorene ND ug/kg 120 25. 1 Dibenzo(gh.)panthracene ND ug/kg 120 25. 1 Dibenzo(gh.)panthracene ND ug/kg 120 24. 1 Indeno(1,2,3-cd)pyrene ND ug/kg 120 24. 1 Indeno(1,2,3-cd)pyrene ND ug/kg 160 20. 1 Flyrene ND ug/kg 160 20. 1 Biphenyl ND ug/kg 120 20. 1 Biphenyl ND ug/kg 210 38. 1 C-Chioroaniline ND ug/kg 210 39. 1 C-Chioroaniline ND ug/kg 210 39. 1 C-Chioroaniline ND ug/kg 210 20. 1 C-Chioroaniline ND ug/kg 210 31. 1 C-Chioroaniline ND ug/kg 300 32. 1 C-Chiorophenol ND ug/kg 300 32. 1 C-							 1
Bernzolghilpenylene ND		ND					
Fluorene	Benzo(ghi)perylene						
Phenanthrane ND ug/kg 120 25. 1 Dibenzo(a) h)anthracene ND ug/kg 120 24. 1 Indeno(1,2,3-cd)pyrane ND ug/kg 160 29. 1 Pyrane ND ug/kg 160 29. 1 Biphenyl ND ug/kg 470 48. 1 4-Chloroaniline ND ug/kg 210 38. 1 2-Nitroaniline ND ug/kg 210 40. 1 2-Nitroaniline ND ug/kg 210 40. 1 4-Nitroaniline ND ug/kg 210 40. 1 4-Nitroaniline ND ug/kg 210 39. 1 4-Nitroaniline ND ug/kg 210 39. 1 1-Leantering ND ug/kg 210 20. 1 2-Nitroaniline ND ug/kg 210 25. 1 1-Leante		ND					
Dibenzo(a,h)anthracene ND	Phenanthrene	ND			120	25.	1
Indeno(1,2,3-cd)pyrene ND	Dibenzo(a,h)anthracene	ND			120	24.	1
Pyrene ND ug/kg 120 20. 1 Blphenyl ND ug/kg 470 48. 1 4-Chloroanliine ND ug/kg 210 38. 1 2-Nitroaniline ND ug/kg 210 40. 1 3-Nitroaniline ND ug/kg 210 40. 1 4-Nitroaniline ND ug/kg 210 86. 1 4-Nitroaniline ND ug/kg 210 86. 1 4-Nitroaniline ND ug/kg 210 20. 1 4-Nitrophenol ND ug/kg 210 20. 1 2-Methylaphthologhenol ND ug/kg 210 24. 1 2-Holintrophen	Indeno(1,2,3-cd)pyrene	ND			160	29.	1
Bipheny ND	Pyrene	ND			120	20.	1
4-Chloroaniline ND ug/kg 210 38. 1 2-Nitroaniline ND ug/kg 210 40. 1 3-Nitroaniline ND ug/kg 210 39. 1 4-Nitroaniline ND ug/kg 210 39. 1 4-Nitroaniline ND ug/kg 210 66. 1 Dibenzofuran ND ug/kg 210 20. 1 2-Methyinaphthalene ND ug/kg 250 25. 1 1.2.4.5-Tertachlorophenol ND ug/kg 210 22. 1 Acetophenone ND ug/kg 210 22. 1 Acetophenone ND ug/kg 210 26. 1 2.4.6-Trichlorophenol ND ug/kg 210 26. 1 2.4.6-Trichlorophenol ND ug/kg 210 26. 1 2.4-Dintrophenol ND ug/kg 210 26. 1 2.4-Dintrophenol ND ug/kg 210 26. 1 2.4-Dintrophenol ND ug/kg 210 31. 1 2.4-Dintrophenol ND ug/kg 210 24. 1 2.4-Dintrophenol ND ug/kg 210 26. 1 2.4-Dintrophenol ND ug/kg 210 31. 1 2.4-Dintrophenol ND ug/kg 210 26. 1 2.4-Dintrophenol ND ug/kg 210 26. 1 2.4-Dintrophenol ND ug/kg 210 31. 1 2.4-Dintrophenol ND ug/kg 30 33. 1 2-Nitrophenol ND ug/kg 30 39. 1 4-Nitrophenol ND ug/kg 30 31. 1 4-Nitrophenol ND ug/kg 30 31. 1 4-Nitrophenol ND ug/kg 30 31. 1 4-Nitrophenol ND ug/kg 30 32. 1 4-Dintrophenol ND ug/kg 30 32. 1 4-Dentachlorophenol ND ug/kg 30 32. 1 4-Dentachlorophenol ND ug/kg 30 32. 1 3-Methylphenol4-Methylphenol ND ug/kg 30 30. 32. 1	Biphenyl	ND			470	48.	1
2-Nitroaniline ND ug/kg 210 40. 1 3-Nitroaniline ND ug/kg 210 39. 1 4-Nitroaniline ND ug/kg 210 86. 1 Dibenzofuran ND ug/kg 210 20. 1 2-Methylnaphthalene ND ug/kg 250 25. 1 1,2,4,5-Tetrachlorobenzene ND ug/kg 210 22. 1 Acetophenone ND ug/kg 210 26. 1 4,46-Trichlorophenol ND ug/kg 120 39. 1 p-Chloro-moresol ND ug/kg 210 31. 1 2-Chlorophenol ND ug/kg 210 31. 1 2-Holichlorophenol ND ug/kg 210 68. 1 2-Holichlorophenol ND ug/kg 290 84. 1 2-Holintrophenol ND ug/kg 290 84. 1 <td>4-Chloroaniline</td> <td>ND</td> <td></td> <td></td> <td>210</td> <td>38.</td> <td>1</td>	4-Chloroaniline	ND			210	38.	1
3-Nitroaniline ND	2-Nitroaniline	ND			210	40.	1
4-Nitroaniline ND	3-Nitroaniline	ND			210	39.	1
2-Methylnaphthalene ND ug/kg 250 25. 1 1,2,4,5-Tetrachlorobenzene ND ug/kg 210 22. 1 Acetophenone ND ug/kg 210 26. 1 2,4,6-Trichlorophenol ND ug/kg 120 39. 1 2,4,6-Trichlorophenol ND ug/kg 210 31. 1 2-Chlorophenol ND ug/kg 210 34. 1 2-Chlorophenol ND ug/kg 190 33. 1 2,4-Dinethylphenol ND ug/kg 210 68. 1 2-Nitrophenol ND ug/kg 450 78. 1 4-Nitrophenol ND ug/kg 290 84. 1 2,4-Dinitrophenol ND ug/kg 990 96. 1 4,6-Dinitro-o-cresol ND ug/kg 540 99. 1 Pentachlorophenol ND ug/kg 540 99. 1 </td <td>4-Nitroaniline</td> <td>ND</td> <td></td> <td></td> <td>210</td> <td>86.</td> <td>1</td>	4-Nitroaniline	ND			210	86.	1
2-Methylnaphthalene ND ug/kg 250 25. 1 1,2,4,5-Tetrachlorobenzene ND ug/kg 210 22. 1 Acetophenone ND ug/kg 210 26. 1 2,4,6-Trichlorophenol ND ug/kg 120 39. 1 p-Chloro-m-cresol ND ug/kg 210 31. 1 2-Chlorophenol ND ug/kg 210 24. 1 2,4-Dichlorophenol ND ug/kg 190 33. 1 2,4-Dinethylphenol ND ug/kg 210 68. 1 2-Nitrophenol ND ug/kg 450 78. 1 4-Nitrophenol ND ug/kg 290 84. 1 2,4-Dinitrophenol ND ug/kg 990 96. 1 4,6-Dinitro-o-cresol ND ug/kg 540 99. 1 Pentachlorophenol ND ug/kg 540 99. 1 Phenol ND ug/kg 210 31. 1 <td>Dibenzofuran</td> <td>ND</td> <td></td> <td>ug/kg</td> <td>210</td> <td>20.</td> <td>1</td>	Dibenzofuran	ND		ug/kg	210	20.	1
Acetophenone ND ug/kg 210 26. 1 2,4,6-Trichlorophenol ND ug/kg 120 39. 1 p-Chloro-m-cresol ND ug/kg 210 31. 1 2-Chlorophenol ND ug/kg 210 24. 1 2,4-Dichlorophenol ND ug/kg 190 33. 1 2,4-Dinethylphenol ND ug/kg 210 68. 1 2,4-Dinethylphenol ND ug/kg 450 78. 1 2-Nitrophenol ND ug/kg 450 78. 1 4-Nitrophenol ND ug/kg 290 84. 1 2,4-Dinitro-benol ND ug/kg 990 96. 1 4,6-Dinitro-o-cresol ND ug/kg 540 99. 1 Pentachlorophenol ND ug/kg 210 31. 1 Phenol ND ug/kg 210 32. 1 <tr< td=""><td>2-Methylnaphthalene</td><td>ND</td><td></td><td></td><td>250</td><td>25.</td><td>1</td></tr<>	2-Methylnaphthalene	ND			250	25.	1
2,4,6-Trichlorophenol ND ug/kg 120 39. 1 p-Chloro-m-cresol ND ug/kg 210 31. 1 2-Chlorophenol ND ug/kg 210 24. 1 2,4-Dichlorophenol ND ug/kg 190 33. 1 2,4-Dichlorophenol ND ug/kg 190 33. 1 2,4-Dimethylphenol ND ug/kg 210 68. 1 2-Nitrophenol ND ug/kg 450 78. 1 4-Nitrophenol ND ug/kg 290 84. 1 2,4-Dinitrophenol ND ug/kg 990 96. 1 4,6-Dinitro-c-cresol ND ug/kg 990 96. 1 4,6-Dinitro-c-cresol ND ug/kg 540 99. 1 Pentachlorophenol ND ug/kg 160 46. 1 Phenol ND ug/kg 210 31. 1 2-Methylphenol ND ug/kg 210 32. 1 3-Methylphenol/4-Methylphenol ND ug/kg 300 32. 1 3-Methylphenol/4-Methylphenol ND ug/kg 210 40. 1 Carbazole ND ug/kg 210 20. 1 Atrazine ND ug/kg 210 20. 1 Atrazine	1,2,4,5-Tetrachlorobenzene	ND		ug/kg	210	22.	1
p-Chloro-m-cresol ND ug/kg 210 31. 1 2-Chlorophenol ND ug/kg 210 24. 1 2,4-Dichlorophenol ND ug/kg 190 33. 1 2,4-Dimethylphenol ND ug/kg 210 68. 1 2-Nitrophenol ND ug/kg 450 78. 1 4-Nitrophenol ND ug/kg 290 84. 1 2,4-Dinitrophenol ND ug/kg 990 96. 1 4,6-Dinitro-o-cresol ND ug/kg 540 99. 1 Pentachlorophenol ND ug/kg 160 46. 1 Phenol ND ug/kg 210 31. 1 2-Methylphenol ND ug/kg 210 32. 1 3-Methylphenol/4-Methylphenol ND ug/kg 210 32. 1 2,4,5-Trichlorophenol ND ug/kg 210 40. 1	Acetophenone	ND		ug/kg	210	26.	1
2-Chlorophenol ND ug/kg 210 24. 1 2,4-Dichlorophenol ND ug/kg 190 33. 1 2,4-Dimethylphenol ND ug/kg 210 68. 1 2-Nitrophenol ND ug/kg 450 78. 1 4-Nitrophenol ND ug/kg 290 84. 1 2,4-Dinitrophenol ND ug/kg 990 96. 1 4,6-Dinitro-o-cresol ND ug/kg 990 96. 1 4,6-Dinitro-o-cresol ND ug/kg 540 99. 1 Pentachlorophenol ND ug/kg 160 46. 1 Phenol ND ug/kg 210 31. 1 2-Methylphenol ND ug/kg 210 32. 1 3-Methylphenol/4-Methylphenol ND ug/kg 300 32. 1 2,4,5-Trichlorophenol ND ug/kg 210 40. 1 Carbazole ND ug/kg 210 20. 1 Atrazine ND ug/kg 210 20. 1	2,4,6-Trichlorophenol	ND		ug/kg	120	39.	1
2,4-Dichlorophenol ND ug/kg 190 33. 1 2,4-Dimethylphenol ND ug/kg 210 68. 1 2-Nitrophenol ND ug/kg 450 78. 1 4-Nitrophenol ND ug/kg 290 84. 1 2,4-Dinitrophenol ND ug/kg 990 96. 1 4,6-Dinitro-o-cresol ND ug/kg 540 99. 1 Pentachlorophenol ND ug/kg 160 46. 1 Phenol ND ug/kg 210 31. 1 2-Methylphenol ND ug/kg 210 32. 1 3-Methylphenol/4-Methylphenol ND ug/kg 300 32. 1 2,4,5-Trichlorophenol ND ug/kg 210 40. 1 Carbazole ND ug/kg 210 20. 1 Atrazine ND ug/kg 160 72. 1	p-Chloro-m-cresol	ND		ug/kg	210	31.	1
2,4-Dimethylphenol ND ug/kg 210 68. 1 2-Nitrophenol ND ug/kg 450 78. 1 4-Nitrophenol ND ug/kg 290 84. 1 2,4-Dinitrophenol ND ug/kg 990 96. 1 4,6-Dinitro-o-cresol ND ug/kg 540 99. 1 Pentachlorophenol ND ug/kg 160 46. 1 Phenol ND ug/kg 210 31. 1 2-Methylphenol ND ug/kg 210 32. 1 3-Methylphenol/4-Methylphenol ND ug/kg 300 32. 1 2,4,5-Trichlorophenol ND ug/kg 210 40. 1 Carbazole ND ug/kg 210 20. 1 Atrazine ND ug/kg 160 72. 1	2-Chlorophenol	ND		ug/kg	210	24.	1
2-Nitrophenol ND ug/kg 450 78. 1 4-Nitrophenol ND ug/kg 290 84. 1 2,4-Dinitrophenol ND ug/kg 990 96. 1 4,6-Dinitro-o-cresol ND ug/kg 540 99. 1 Pentachlorophenol ND ug/kg 160 46. 1 Phenol ND ug/kg 210 31. 1 2-Methylphenol ND ug/kg 210 32. 1 3-Methylphenol/4-Methylphenol ND ug/kg 300 32. 1 2,4,5-Trichlorophenol ND ug/kg 210 40. 1 Carbazole ND ug/kg 210 20. 1 Atrazine ND ug/kg 160 72. 1	2,4-Dichlorophenol	ND		ug/kg	190	33.	1
4-Nitrophenol ND ug/kg 290 84. 1 2,4-Dinitrophenol ND ug/kg 990 96. 1 4,6-Dinitro-o-cresol ND ug/kg 540 99. 1 Pentachlorophenol ND ug/kg 160 46. 1 Phenol ND ug/kg 210 31. 1 2-Methylphenol ND ug/kg 210 32. 1 3-Methylphenol/4-Methylphenol ND ug/kg 300 32. 1 2,4,5-Trichlorophenol ND ug/kg 210 40. 1 Carbazole ND ug/kg 210 20. 1 Atrazine ND ug/kg 160 72. 1	2,4-Dimethylphenol	ND		ug/kg	210	68.	1
2,4-Dinitrophenol ND ug/kg 990 96. 1 4,6-Dinitro-o-cresol ND ug/kg 540 99. 1 Pentachlorophenol ND ug/kg 160 46. 1 Phenol ND ug/kg 210 31. 1 2-Methylphenol ND ug/kg 210 32. 1 3-Methylphenol/4-Methylphenol ND ug/kg 300 32. 1 2,4,5-Trichlorophenol ND ug/kg 210 40. 1 Carbazole ND ug/kg 210 20. 1 Atrazine ND ug/kg 160 72. 1	2-Nitrophenol	ND		ug/kg	450	78.	1
4,6-Dinitro-o-cresol ND ug/kg 540 99. 1 Pentachlorophenol ND ug/kg 160 46. 1 Phenol ND ug/kg 210 31. 1 2-Methylphenol ND ug/kg 210 32. 1 3-Methylphenol/4-Methylphenol ND ug/kg 300 32. 1 2,4,5-Trichlorophenol ND ug/kg 210 40. 1 Carbazole ND ug/kg 210 20. 1 Atrazine ND ug/kg 160 72. 1	4-Nitrophenol	ND		ug/kg	290	84.	1
Pentachlorophenol ND ug/kg 160 46. 1 Phenol ND ug/kg 210 31. 1 2-Methylphenol ND ug/kg 210 32. 1 3-Methylphenol/4-Methylphenol ND ug/kg 300 32. 1 2,4,5-Trichlorophenol ND ug/kg 210 40. 1 Carbazole ND ug/kg 210 20. 1 Atrazine ND ug/kg 160 72. 1	2,4-Dinitrophenol	ND		ug/kg	990	96.	1
Phenol ND ug/kg 210 31. 1 2-Methylphenol ND ug/kg 210 32. 1 3-Methylphenol/4-Methylphenol ND ug/kg 300 32. 1 2,4,5-Trichlorophenol ND ug/kg 210 40. 1 Carbazole ND ug/kg 210 20. 1 Atrazine ND ug/kg 160 72. 1	4,6-Dinitro-o-cresol	ND		ug/kg	540	99.	1
2-Methylphenol ND ug/kg 210 32. 1 3-Methylphenol/4-Methylphenol ND ug/kg 300 32. 1 2,4,5-Trichlorophenol ND ug/kg 210 40. 1 Carbazole ND ug/kg 210 20. 1 Atrazine ND ug/kg 160 72. 1	Pentachlorophenol	ND		ug/kg	160	46.	1
3-Methylphenol/4-Methylphenol ND ug/kg 300 32. 1 2,4,5-Trichlorophenol ND ug/kg 210 40. 1 Carbazole ND ug/kg 210 20. 1 Atrazine ND ug/kg 160 72. 1	Phenol	ND		ug/kg	210	31.	1
2,4,5-Trichlorophenol ND ug/kg 210 40. 1 Carbazole ND ug/kg 210 20. 1 Atrazine ND ug/kg 160 72. 1	2-Methylphenol	ND		ug/kg	210	32.	1
Carbazole ND ug/kg 210 20. 1 Atrazine ND ug/kg 160 72. 1	3-Methylphenol/4-Methylphenol	ND		ug/kg	300	32.	1
Atrazine ND ug/kg 160 72. 1	2,4,5-Trichlorophenol	ND		ug/kg	210	40.	1
	Carbazole	ND		ug/kg	210	20.	1
Benzaldehyde ND ug/kg 270 56. 1	Atrazine	ND		ug/kg	160	72.	1
	Benzaldehyde	ND		ug/kg	270	56.	1

05/10/19

Project Name: 641 WEST AVE (NIAGARA COUNTY) Lab Number: L1917600

Project Number: Not Specified

SAMPLE RESULTS

Report Date:

Lab ID: L1917600-05 Date Collected: 04/29/19 11:05 Client ID: Date Received: 04/29/19 EB-5

Sample Location: 641 WEST AVE., LOCKPORT, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS	- Westborough Lab						
Caprolactam	ND		ug/kg	210	63.	1	
2,3,4,6-Tetrachlorophenol	ND		ug/kg	210	42.	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	83	25-120
Phenol-d6	80	10-120
Nitrobenzene-d5	89	23-120
2-Fluorobiphenyl	85	30-120
2,4,6-Tribromophenol	91	10-136
4-Terphenyl-d14	67	18-120

L1917600

05/10/19

Project Name: Lab Number: 641 WEST AVE (NIAGARA COUNTY)

Project Number: Not Specified

SAMPLE RESULTS

Date Collected: 04/29/19 11:40

Report Date:

Lab ID: L1917600-06 Date Received: 04/29/19 Client ID: EB-7

Sample Location: 641 WEST AVE., LOCKPORT, NY Field Prep: Not Specified

Sample Depth:

Analytical Date:

Extraction Method: EPA 3546 Matrix: Soil **Extraction Date:** 05/05/19 13:57 Analytical Method: 1,8270D

Analyst: JG 89% Percent Solids:

05/09/19 16:47

Hexachlorobenzene ND ug/kg 110 21. 1	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Hexachlorobenzene ND ug/kg 110 21. 1 Bis(2-chloroethyr)ether ND ug/kg 170 25. 1 2-Chloronaphthalene ND ug/kg 180 18. 1 2,4-Dinitrotoluene ND ug/kg 180 37. 1 2,4-Dinitrotoluene ND ug/kg 180 37. 1 2,5-Dinitrotoluene ND ug/kg 180 37. 1 2,5-Dinitrotoluene ND ug/kg 180 37. 1 2,5-Dinitrotoluene ND ug/kg 180 37. 1 2-Chlorophenyl ether ND ug/kg 180 20. 1 4-Chlorophenyl ether ND ug/kg 180 20. 1 4-Chlorophenyl ether ND ug/kg 180 20. 1 4-Bromophenyl ether ND ug/kg 180 28. 1 Bis(2-chloroisopropylether ND ug/kg 200 32. 1 Bis(2-chloroisopropylether ND ug/kg 200 19. 1 Hexachlorophadiene ND ug/kg 180 27. 1 Hexachlorophadiene ND ug/kg 180 29. 1 ND ND ug/kg 180 29. 1 Din-Dulylphthalate ND ug/kg 180 47. 1 Din-Dulyphthalate ND ug/kg 180 47. 1 Din-Dulyphthalate ND ug/kg 180 47. 1 Din-Dulyphthalate ND ug/kg 180 35. 1 Din-Dulyphthalate ND ug/kg 180 36. 17. 1 Din-Dulyphthalate ND ug/kg 180 39. Semivolatile Organics by GC/MS	- Westborough Lab						
Bis(2-chloroethyl)ether	Acenaphthene	ND		ug/kg	150	19.	1
2-Chloronaphthalene ND ug/kg 180 18. 1 3,3'-Dichlorobenzidine ND ug/kg 180 37. 1 2,4-Dinitrotoluene ND ug/kg 180 37. 1 2,6-Dinitrotoluene ND ug/kg 180 32. 1 Fluoranthene ND ug/kg 180 32. 1 Fluoranthene ND ug/kg 180 32. 1 Fluoranthene ND ug/kg 180 20. 1 4-Chlorophenyl phenyl ether ND ug/kg 180 20. 1 4-Bromophenyl phenyl ether ND ug/kg 180 20. 1 4-Bromophenyl phenyl ether ND ug/kg 180 20. 1 4-Bromophenyl phenyl ether ND ug/kg 180 22. 1 Bis(2-chloroisoproyl)ether ND ug/kg 180 22. 1 Bis(2-chloroisoproyl)ether ND ug/kg 200 19. 1 Hexachlorobutadiene ND ug/kg 180 27. 1 Hexachlorocyclopentadiene ND ug/kg 180 27. 1 No ND ug/kg 180 29. 1 NO ND ug/kg 180 29. 1 NO ND ug/kg 180 29. 1 ND NDPA/DPA ND ug/kg 180 29. 1 ND NDPA/DPA ND ug/kg 180 29. 1 Bis(2-ethylhexyll-phthalate ND ug/kg 180 47. 1 Din-n-butyphthalate ND ug/kg 180 39. 1 Benzo(a)anthracene	Hexachlorobenzene	ND		ug/kg	110	21.	1
3,3*Dichlorobenzidine ND ug/kg 180 49. 1 2,4*Dinitrotoluene ND ug/kg 180 37. 1 2,6*Dinitrotoluene ND ug/kg 180 32. 1 Fluoranthene ND ug/kg 180 32. 1 Fluoranthene ND ug/kg 110 21. 1 4*Chlorophenyl phenyl ether ND ug/kg 180 20. 1 4*Bromophenyl phenyl ether ND ug/kg 180 28. 1 Bis(2-chloroisopropyl)ether ND ug/kg 200 32. 1 Bis(2-chloroisopropyl)ether ND ug/kg 200 19. 1 Hexachlorocydopentadiene ND ug/kg 180 27. 1 Naphthalene ND ug/kg 150 30. 1 Isophorone ND ug/kg 150 30. 1 Isophorone ND ug/kg 170 24. 1 Naphthalene ND ug/kg 170 24. 1 Naphthalene ND ug/kg 170 28. 1 NINDPA/DPA ND ug/kg 150 21. 1 NIPO-AIPA ND ug/kg 180 29. 1 Bis(2-ethylhexyl)phthalate ND ug/kg 180 47. 1 Bis(2-ethylhexyl)phthalate ND ug/kg 180 35. 1 Di-n-butylphthalate ND ug/kg 180 35. 1 Diethyl phthalate ND ug/kg 180 39. 1 Benzo(a)anthracene ND ug/kg 180 39. 1 Benzo(a)anthracene ND ug/kg 180 39. 1	Bis(2-chloroethyl)ether	ND		ug/kg	170	25.	1
2.4-Dinitrotoluene ND ug/kg 180 37. 1 2.6-Dinitrotoluene ND ug/kg 180 32. 1 Fluoranthene ND ug/kg 110 21. 1 4-Chlorophenyl phenyl ether ND ug/kg 180 20. 1 4-Bromophenyl phenyl ether ND ug/kg 180 28. 1 Bis(2-chloriosopropyl)ether ND ug/kg 220 32. 1 Bis(2-chlorosopropyl)ether ND ug/kg 200 19. 1 Hexachlorobutadiene ND ug/kg 180 27. 1 Hexachlorobutadiene ND ug/kg 530 170 1 Hexachlorocydopentadiene ND ug/kg 150 30. 1 Isophorone ND ug/kg 150 30. 1 Isophorone ND ug/kg 170 24. 1 Naphthalene ND ug/kg 180 23. 1 NDPA/DPA ND ug/kg 180 29. 1 Bis(2-ethylhexyl)phthalate ND ug/kg 180 47. 1 Butyl benzyl phthalate ND ug/kg 180 47. 1 Di-n-butylphthalate ND ug/kg 180 35. 1 Di-n-butylphthalate ND ug/kg 180 39. 1 Dienthyl phthalate ND ug/kg 180 39. 1 Dienthyl phthalate ND ug/kg 180 39. 1	2-Chloronaphthalene	ND		ug/kg	180	18.	1
2,6-Dinitrotoluene ND ug/kg 180 32. 1 Fluoranthene ND ug/kg 110 21. 1 4-Chlorophenyl phenyl ether ND ug/kg 180 20. 1 4-Bromophenyl phenyl ether ND ug/kg 180 28. 1 Bis(2-chlorostopropyl)ether ND ug/kg 220 32. 1 Bis(2-chloroethoxy)methane ND ug/kg 200 19. 1 Hexachlorobutadiene ND ug/kg 180 27. 1 Hexachlorocyclopentadiene ND ug/kg 530 170 1 Hexachlorocyclopentadiene ND ug/kg 530 170 1 Hexachlorocyclopentadiene ND ug/kg 530 170 1 Hexachlorocyclopentadiene ND ug/kg 150 30. 1 Hexachlorocyclopentadiene ND ug/kg 150 30. 1 Hexachlorocyclopentadiene ND	3,3'-Dichlorobenzidine	ND		ug/kg	180	49.	1
Fluoranthene ND ug/kg 110 21. 1 4-Chlorophenyl phenyl ether ND ug/kg 180 20. 1 4-Bromophenyl phenyl ether ND ug/kg 180 28. 1 Bis(2-chloroisopropyl)ether ND ug/kg 220 32. 1 Bis(2-chloroisopropyl)ether ND ug/kg 200 19. 1 Hexachlorobutadiene ND ug/kg 200 19. 1 Hexachlorobutadiene ND ug/kg 180 27. 1 Hexachlorocyclopentadiene ND ug/kg 530 170 1 Hexachlorocyclopentadiene ND ug/kg 150 30. 1 Isophorone ND ug/kg 150 30. 1 Isophorone ND ug/kg 170 24. 1 Naphthalene ND ug/kg 170 24. 1 Naphthalene ND ug/kg 170 28. 1 Nitrobenzene ND ug/kg 170 28. 1 NITrobenzene ND ug/kg 150 21. 1 NIPPA/DPA ND ug/kg 150 21. 1 NIPPA/DPA ND ug/kg 180 29. 1 Bis(2-ethylhexyl)phthalate ND ug/kg 180 47. 1 Butyl benzyl phthalate ND ug/kg 180 35. 1 Di-n-butylphthalate ND ug/kg 180 35. 1 Di-n-butylphthalate ND ug/kg 180 35. 1 Di-n-cyclylphthalate ND ug/kg 180 35. 1	2,4-Dinitrotoluene	ND		ug/kg	180	37.	1
4-Chlorophenyl phenyl ether ND ug/kg 180 20. 1 4-Bromophenyl phenyl ether ND ug/kg 180 28. 1 Bis(2-chloroisopropyl)ether ND ug/kg 200 19. 1 Hexachlorobutadiene ND ug/kg 180 27. 1 Hexachlorobutadiene ND ug/kg 180 27. 1 Hexachlorocyclopentadiene ND ug/kg 530 170 1 Hexachlorocyclopentadiene ND ug/kg 150 30. 1 Isophorone ND ug/kg 170 24. 1 Naphthalene ND ug/kg 180 23. 1 Nitrobenzene ND ug/kg 170 28. 1 NDPA/DPA ND ug/kg 170 28. 1 NDPA/DPA ND ug/kg 150 21. 1 n-Nitrosodi-n-propylamine ND ug/kg 180 29. 1 Bis(2-ethylhexyl)phthalate ND ug/kg 180 47. 1 Di-n-butylphthalate ND ug/kg 180 35. 1 Di-n-octylphthalate ND ug/kg 180 35. 1 Di-n-octylphthalate ND ug/kg 180 36. 1 Di-methyl phthalate ND ug/kg 180 37. 1 Dimethyl phthalate ND ug/kg 180 37. 1 Dimethyl phthalate ND ug/kg 180 39. 1 Benzo(a)anthracene ND ug/kg 180 39. 1 Benzo(a)anthracene	2,6-Dinitrotoluene	ND		ug/kg	180	32.	1
A-Bromophenyl phenyl ether ND ug/kg 180 28. 1 Bis(2-chloroisopropyl)ether ND ug/kg 220 32. 1 Bis(2-chloroisopropyl)ether ND ug/kg 200 19. 1 Hexachlorobutadiene ND ug/kg 180 27. 1 Hexachlorocyclopentadiene ND ug/kg 530 170 1 Hexachlorocyclopentadiene ND ug/kg 530 170 1 Hexachlorocyclopentadiene ND ug/kg 150 30. 1 Isophorone ND ug/kg 170 24. 1 Naphthalene ND ug/kg 170 24. 1 Naphthalene ND ug/kg 180 23. 1 Nitrobenzene ND ug/kg 170 28. 1 NITrobenzene ND ug/kg 170 28. 1 NDPA/DPA ND ug/kg 150 21. 1 In-Nitrosodi-n-propylamine ND ug/kg 180 29. 1 Bis(2-ethylhexyl)phthalate ND ug/kg 180 47. 1 Butyl benzyl phthalate ND ug/kg 180 47. 1 Di-n-butylphthalate ND ug/kg 180 35. 1 Di-n-octylphthalate ND ug/kg 180 35. 1 Di-n-octylphthalate ND ug/kg 180 63. 1 Dien-butylphthalate ND ug/kg 180 39. 1 Benzo(a)anthracene ND ug/kg 180 39. 1 Benzo(a)anthracene ND ug/kg 180 39. 1	Fluoranthene	ND		ug/kg	110	21.	1
Bis(2-chloroisopropyl)ether ND ug/kg 220 32 1 Bis(2-chloroethoxy)methane ND ug/kg 200 19 1 Hexachlorobutadiene ND ug/kg 180 27 1 Hexachlorocyclopentadiene ND ug/kg 530 170 1 Hexachloroethane ND ug/kg 150 30 1 Isophorone ND ug/kg 170 24 1 Naphthalene ND ug/kg 180 23 1 Nitrobenzene ND ug/kg 170 28 1 NDPA/DPA ND ug/kg 150 21 1 n-Nitrosodi-n-propylamine ND ug/kg 180 29 1 Bis(2-ethylhexyl)phthalate ND ug/kg 180 64 1 Butyl benzyl phthalate ND ug/kg 180 47 1 Di-n-butylphthalate ND ug/kg 180 35	4-Chlorophenyl phenyl ether	ND		ug/kg	180	20.	1
Bis(2-chloroethoxy)methane ND ug/kg 200 19. 1 Hexachlorobutadiene ND ug/kg 180 27. 1 Hexachlorocyclopentadiene ND ug/kg 530 170 1 Hexachlorocyclopentadiene ND ug/kg 150 30. 1 Hexachlorocyclopentadiene ND ug/kg 150 30. 1 Hexachlorocyclopentadiene ND ug/kg 170 24. 1 Isophorone ND ug/kg 170 24. 1 Naphthalene ND ug/kg 180 23. 1 Nitrobenzene ND ug/kg 170 28. 1 NDPA/DPA ND ug/kg 150 21. 1 N-Nitrosodi-n-propylamine ND ug/kg 180 29. 1 Bis(2-ethylhexyl)phthalate ND ug/kg 180 64. 1 Butyl benzyl phthalate ND ug/kg 180	4-Bromophenyl phenyl ether	ND		ug/kg	180	28.	1
Hexachlorobutadiene ND	Bis(2-chloroisopropyl)ether	ND		ug/kg	220	32.	1
Hexachlorocyclopentadiene ND	Bis(2-chloroethoxy)methane	ND		ug/kg	200	19.	1
Hexachloroethane ND	Hexachlorobutadiene	ND		ug/kg	180	27.	1
Sophorone ND	Hexachlorocyclopentadiene	ND		ug/kg	530	170	1
Naphthalene ND ug/kg 180 23. 1 Nitrobenzene ND ug/kg 170 28. 1 NDPA/DPA ND ug/kg 150 21. 1 n-Nitrosodi-n-propylamine ND ug/kg 180 29. 1 Bis(2-ethylhexyl)phthalate ND ug/kg 180 64. 1 Butyl benzyl phthalate ND ug/kg 180 47. 1 Di-n-butylphthalate ND ug/kg 180 35. 1 Di-n-octylphthalate ND ug/kg 180 63. 1 Diethyl phthalate ND ug/kg 180 17. 1 Dimethyl phthalate ND ug/kg 180 39. 1 Benzo(a)anthracene ND ug/kg 110 21. 1	Hexachloroethane	ND		ug/kg	150	30.	1
Nitrobenzene ND ug/kg 170 28. 1 NDPA/DPA ND ug/kg 150 21. 1 n-Nitrosodi-n-propylamine ND ug/kg 180 29. 1 Bis(2-ethylhexyl)phthalate ND ug/kg 180 64. 1 Butyl benzyl phthalate ND ug/kg 180 47. 1 Di-n-butylphthalate ND ug/kg 180 35. 1 Di-n-cotylphthalate ND ug/kg 180 63. 1 Diethyl phthalate ND ug/kg 180 17. 1 Dimethyl phthalate ND ug/kg 180 39. 1 Benzo(a)anthracene ND ug/kg 110 21. 1	Isophorone	ND		ug/kg	170	24.	1
NDPA/DPA ND ug/kg 150 21. 1 n-Nitrosodi-n-propylamine ND ug/kg 180 29. 1 Bis(2-ethylhexyl)phthalate ND ug/kg 180 64. 1 Butyl benzyl phthalate ND ug/kg 180 47. 1 Di-n-butylphthalate ND ug/kg 180 35. 1 Di-n-octylphthalate ND ug/kg 180 63. 1 Diethyl phthalate ND ug/kg 180 17. 1 Dimethyl phthalate ND ug/kg 180 39. 1 Benzo(a)anthracene ND ug/kg 110 21. 1	Naphthalene	ND		ug/kg	180	23.	1
n-Nitrosodi-n-propylamine ND ug/kg 180 29. 1 Bis(2-ethylhexyl)phthalate ND ug/kg 180 64. 1 Butyl benzyl phthalate ND ug/kg 180 47. 1 Di-n-butylphthalate ND ug/kg 180 35. 1 Di-n-octylphthalate ND ug/kg 180 63. 1 Diethyl phthalate ND ug/kg 180 63. 1 Diethyl phthalate ND ug/kg 180 39. 1 Dimethyl phthalate ND ug/kg 180 39. 1 Benzo(a)anthracene ND ug/kg 110 21. 1	Nitrobenzene	ND		ug/kg	170	28.	1
Bis(2-ethylhexyl)phthalate ND ug/kg 180 64. 1 Butyl benzyl phthalate ND ug/kg 180 47. 1 Di-n-butylphthalate ND ug/kg 180 35. 1 Di-n-octylphthalate ND ug/kg 180 63. 1 Diethyl phthalate ND ug/kg 180 17. 1 Dimethyl phthalate ND ug/kg 180 39. 1 Benzo(a)anthracene ND ug/kg 110 21. 1	NDPA/DPA	ND		ug/kg	150	21.	1
Butyl benzyl phthalate ND ug/kg 180 47. 1 Di-n-butylphthalate ND ug/kg 180 35. 1 Di-n-octylphthalate ND ug/kg 180 63. 1 Diethyl phthalate ND ug/kg 180 17. 1 Dimethyl phthalate ND ug/kg 180 39. 1 Benzo(a)anthracene ND ug/kg 110 21. 1	n-Nitrosodi-n-propylamine	ND		ug/kg	180	29.	1
Di-n-butylphthalate ND ug/kg 180 35. 1 Di-n-octylphthalate ND ug/kg 180 63. 1 Diethyl phthalate ND ug/kg 180 17. 1 Dimethyl phthalate ND ug/kg 180 39. 1 Benzo(a)anthracene ND ug/kg 110 21. 1	Bis(2-ethylhexyl)phthalate	ND		ug/kg	180	64.	1
Di-n-octylphthalate ND ug/kg 180 63. 1 Diethyl phthalate ND ug/kg 180 17. 1 Dimethyl phthalate ND ug/kg 180 39. 1 Benzo(a)anthracene ND ug/kg 110 21. 1	Butyl benzyl phthalate	ND		ug/kg	180	47.	1
Diethyl phthalate ND ug/kg 180 17. 1 Dimethyl phthalate ND ug/kg 180 39. 1 Benzo(a)anthracene ND ug/kg 110 21. 1	Di-n-butylphthalate	ND		ug/kg	180	35.	1
Dimethyl phthalate ND ug/kg 180 39. 1 Benzo(a)anthracene ND ug/kg 110 21. 1	Di-n-octylphthalate	ND		ug/kg	180	63.	1
Benzo(a)anthracene ND ug/kg 110 21. 1	Diethyl phthalate	ND		ug/kg	180	17.	1
-575	Dimethyl phthalate	ND		ug/kg	180	39.	1
Benzo(a)pyrene ND ug/kg 150 45. 1	Benzo(a)anthracene	ND		ug/kg	110	21.	1
	Benzo(a)pyrene	ND		ug/kg	150	45.	1

Project Name: 641 WEST AVE (NIAGARA COUNTY) Lab Number: L1917600

Project Number: Not Specified Report Date: 05/10/19

SAMPLE RESULTS

Lab ID: L1917600-06 Date Collected: 04/29/19 11:40

Client ID: EB-7 Date Received: 04/29/19
Sample Location: 641 WEST AVE., LOCKPORT, NY Field Prep: Not Specified

oumple Location.

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - We	estborough Lab					
Benzo(b)fluoranthene	ND		ug/kg	110	31.	1
Benzo(k)fluoranthene	ND		ug/kg	110	30.	1
Chrysene	ND		ug/kg	110	19.	1
Acenaphthylene	ND		ug/kg	150	29.	1
Anthracene	ND		ug/kg	110	36.	1
Benzo(ghi)perylene	ND		ug/kg	150	22.	1
Fluorene	ND		ug/kg	180	18.	1
Phenanthrene	ND		ug/kg	110	23.	1
Dibenzo(a,h)anthracene	ND		ug/kg	110	21.	1
Indeno(1,2,3-cd)pyrene	ND		ug/kg	150	26.	1
Pyrene	26	J	ug/kg	110	18.	1
Biphenyl	ND		ug/kg	420	43.	1
4-Chloroaniline	ND		ug/kg	180	34.	1
2-Nitroaniline	ND		ug/kg	180	36.	1
3-Nitroaniline	ND		ug/kg	180	35.	1
4-Nitroaniline	ND		ug/kg	180	77.	1
Dibenzofuran	ND		ug/kg	180	18.	1
2-Methylnaphthalene	ND		ug/kg	220	22.	1
1,2,4,5-Tetrachlorobenzene	ND		ug/kg	180	19.	1
Acetophenone	ND		ug/kg	180	23.	1
2,4,6-Trichlorophenol	ND		ug/kg	110	35.	1
p-Chloro-m-cresol	ND		ug/kg	180	28.	1
2-Chlorophenol	ND		ug/kg	180	22.	1
2,4-Dichlorophenol	ND		ug/kg	170	30.	1
2,4-Dimethylphenol	ND		ug/kg	180	61.	1
2-Nitrophenol	ND		ug/kg	400	70.	1
4-Nitrophenol	ND		ug/kg	260	76.	1
2,4-Dinitrophenol	ND		ug/kg	890	87.	1
4,6-Dinitro-o-cresol	ND		ug/kg	480	89.	1
Pentachlorophenol	ND		ug/kg	150	41.	1
Phenol	ND		ug/kg	180	28.	1
2-Methylphenol	ND		ug/kg	180	29.	1
3-Methylphenol/4-Methylphenol	ND		ug/kg	270	29.	1
2,4,5-Trichlorophenol	ND		ug/kg	180	36.	1
Carbazole	ND		ug/kg	180	18.	1
Atrazine	ND		ug/kg	150	65.	1
Benzaldehyde	ND		ug/kg	240	50.	1

05/10/19

Project Name: 641 WEST AVE (NIAGARA COUNTY) Lab Number: L1917600

Project Number: Not Specified

SAMPLE RESULTS

Report Date:

Lab ID: L1917600-06 Date Collected: 04/29/19 11:40

Client ID: EB-7 Date Received: 04/29/19
Sample Location: 641 WEST AVE., LOCKPORT, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS	- Westborough Lab						
Caprolactam	ND		ug/kg	180	56.	1	
2,3,4,6-Tetrachlorophenol	ND		ug/kg	180	38.	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	82	25-120
Phenol-d6	86	10-120
Nitrobenzene-d5	93	23-120
2-Fluorobiphenyl	82	30-120
2,4,6-Tribromophenol	87	10-136
4-Terphenyl-d14	78	18-120

05/10/19

Report Date:

Project Name: 641 WEST AVE (NIAGARA COUNTY) Lab Number: L1917600

Project Number: Not Specified

05/09/19 16:23

SAMPLE RESULTS

Lab ID: L1917600-07 Date Collected: 04/29/19 12:30

Client ID: EB-9 Date Received: 04/29/19

Sample Location: 641 WEST AVE., LOCKPORT, NY Field Prep: Not Specified

Sample Depth:

Analytical Date:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8270D Extraction Date: 05/05/19 13:57

Analyst: JG Percent Solids: 91%

Hexachlorobenzene ND	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Hexachlorobenzene ND ug/kg 110 20. 1	Semivolatile Organics by GC/MS - \	Westborough Lab					
Bis(2-chloroethyl)ether	Acenaphthene	ND		ug/kg	140	19.	1
2-Chloronaphthalene ND ug/kg 180 18. 1 2,4-Dinitrotoluene ND ug/kg 180 36. 1 2,4-Dinitrotoluene ND ug/kg 180 36. 1 2,5-Dinitrotoluene ND ug/kg 180 36. 1 2,5-Dinitrotoluene ND ug/kg 180 36. 1 2,5-Dinitrotoluene ND ug/kg 180 31. 1 Fluoranthene 23 J ug/kg 180 31. 1 Fluoranthene 23 J ug/kg 180 31. 1 4-Chlorophenyl phenyl ether ND ug/kg 180 19. 1 4-Romophenyl phenyl ether ND ug/kg 180 28. 1 Bis(2-chloroisopropylether ND ug/kg 200 18. 1 Bis(2-chloroethoxy)methane ND ug/kg 200 18. 1 Hexachlorobutadiene ND ug/kg 180 26. 1 Hexachlorobutadiene ND ug/kg 180 26. 1 Hexachlorobutadiene ND ug/kg 180 26. 1 Hexachloroethane ND ug/kg 180 26. 1 Hexachloroethane ND ug/kg 180 26. 1 Hexachloroethane ND ug/kg 180 27. 1 Naphthalene ND ug/kg 180 22. 1 ND Naphthalene ND ug/kg 180 22. 1 ND ND ug/kg 180 23. 1 ND ND ug/kg 180 24. 1 Din-n-bttylphthalate ND ug/kg 180 34. 1 Din-nottylphthalate ND ug/kg 180 36. 1 1 1 Din-nottylphthalate ND ug/kg 180 38. 1 Benzo(a)anthracene ND ug/kg 180 38. 1 Benzo(a)anthracene ND ug/kg 180 38. 1	Hexachlorobenzene	ND		ug/kg	110	20.	1
3.3-Dichlorobenzidine ND ug/kg 180 48. 1 2,4-Dinitrotoluene ND ug/kg 180 36. 1 2,6-Dinitrotoluene ND ug/kg 180 31. 1 Fluoranthene 23 J ug/kg 110 21. 1 4-Chlorophenyl phenyl ether ND ug/kg 180 19. 1 4-Bromophenyl phenyl ether ND ug/kg 180 28. 1 Bis(2-chloroisopropyl)ether ND ug/kg 220 31. 1 Bis(2-chloroisopropyl)ether ND ug/kg 200 18. 1 Bis(2-chlorobuddiene ND ug/kg 200 18. 1 Hexachlorocydopentadiene ND ug/kg 180 26. 1 ND ug/kg 180 26. 1 Naphthalene ND ug/kg 140 29. 1 Isophorone ND ug/kg 160 23. 1 Isophorone ND ug/kg 160 23. 1 Naphthalene ND ug/kg 180 22. 1 Nitrobenzene ND ug/kg 180 22. 1 Nitrobenzene ND ug/kg 180 25. 1 NDPA/DPA ND ug/kg 180 26. 1 NDPA/DPA ND ug/kg 180 26. 1 Sig(2-ethylpexyl)phthalate ND ug/kg 180 26. 1 Bis(2-ethylpexyl)phthalate ND ug/kg 180 62. 1 Bis(2-ethylpexyl)phthalate ND ug/kg 180 34. 1 Di-n-butylphthalate ND ug/kg 180 36. 1 Dientyl phthalate ND ug/kg 180 36. 1 Dientyl phthalate ND ug/kg 180 36. 1 Dientyl phthalate ND ug/kg 180 36. 1	Bis(2-chloroethyl)ether	ND		ug/kg	160	24.	1
2.4-Dinitrotoluene ND ug/kg 180 36. 1 2.6-Dinitrotoluene ND ug/kg 180 31. 1 Fluoranthene 23 J ug/kg 110 21. 1 4-Chlorophenyl phenyl ether ND ug/kg 180 19. 1 4-Bromophenyl phenyl ether ND ug/kg 180 28. 1 Bis(2-chlorospropyl)ether ND ug/kg 220 31. 1 Bis(2-chlorospropyl)ether ND ug/kg 200 18. 1 Hexachlorobutadiene ND ug/kg 180 26. 1 Hexachlorocyclopentadiene ND ug/kg 520 160 1 Hexachlorocyclopentadiene ND ug/kg 140 29. 1 Isophorone ND ug/kg 180 22. 1 NB ug/kg 160 23. 1 Natrobenzene ND ug/kg 160 27. <td>2-Chloronaphthalene</td> <td>ND</td> <td></td> <td>ug/kg</td> <td>180</td> <td>18.</td> <td>1</td>	2-Chloronaphthalene	ND		ug/kg	180	18.	1
2,6-Dinitrotoluene ND ug/kg 180 31. 1 Fluoranthene 23 J ug/kg 110 21. 1 4-Chlorophenyl phenyl ether ND ug/kg 180 19. 1 4-Bromophenyl phenyl ether ND ug/kg 180 28. 1 Bis(2-chlorostopropyl)ether ND ug/kg 220 31. 1 Bis(2-chloroethoxy)methane ND ug/kg 200 18. 1 Hexachlorobutadiene ND ug/kg 180 26. 1 Hexachlorocyclopentadiene ND ug/kg 520 160 1 Hexachlorocyclopentadiene ND ug/kg 520 160 1 Hexachlorocyclopentadiene ND ug/kg 180 26. 1 Hexachlorocyclopentadiene ND ug/kg 180 26. 1 Hexachlorocyclopentadiene ND ug/kg 180 22. 1 Isophorocyclopentadiene	3,3'-Dichlorobenzidine	ND		ug/kg	180	48.	1
Fluoranthene 23	2,4-Dinitrotoluene	ND		ug/kg	180	36.	1
4-Chlorophenyl phenyl ether ND ug/kg 180 19. 1 4-Bromophenyl phenyl ether ND ug/kg 180 28. 1 Bis(2-chloroisopropyl)ether ND ug/kg 200 18. 1 Hexachlorobutadiene ND ug/kg 180 26. 1 Hexachlorobutadiene ND ug/kg 180 26. 1 Hexachlorocyclopentadiene ND ug/kg 520 160 1 Hexachlorocyclopentadiene ND ug/kg 520 160 1 Hexachlorocyclopentadiene ND ug/kg 140 29. 1 Isophorone ND ug/kg 160 23. 1 Naphthalene ND ug/kg 180 22. 1 Nitrobenzene ND ug/kg 180 22. 1 Nitrobenzene ND ug/kg 180 27. 1 NDPA/DPA ND ug/kg 180 28. 1 ND NPA/DPA ND ug/kg 180 28. 1 Bis(2-ethylhexyl)phthalate ND ug/kg 180 46. 1 Di-n-butylphthalate ND ug/kg 180 34. 1 Di-n-butylphthalate ND ug/kg 180 34. 1 Di-n-octylphthalate ND ug/kg 180 36. 1 Di-n-octylphthalate ND ug/kg 180 37. 1 Dimethyl phthalate ND ug/kg 180 38. 1 Benzo(a)anthracene ND ug/kg 180 38. 1 Benzo(a)anthracene ND ug/kg 180 38. 1	2,6-Dinitrotoluene	ND		ug/kg	180	31.	1
4-Bromophenyl phenyl ether ND ug/kg 180 28. 1 Bis(2-chloroisopropyl)ether ND ug/kg 220 31. 1 Bis(2-chloroethoxy)methane ND ug/kg 200 18. 1 Hexachlorobutadiene ND ug/kg 180 26. 1 Hexachlorocyclopentadiene ND ug/kg 520 160 1 Hexachlorocyclopentadiene ND ug/kg 520 160 1 Hexachlorocthane ND ug/kg 140 29. 1 Isophorone ND ug/kg 160 23. 1 Naphthalene ND ug/kg 180 22. 1 Nitrobenzene ND ug/kg 180 27. 1 NDPA/DPA ND ug/kg 180 20. 1 In-Nitrosodi-n-propylamine ND ug/kg 180 28. 1 Bis(2-ethylhexyl)phthalate ND ug/kg 180 62. 1 Butyl benzyl phthalate ND ug/kg 180 62. 1 Butyl benzyl phthalate ND ug/kg 180 46. 1 Di-n-butylphthalate ND ug/kg 180 34. 1 Di-n-octylphthalate ND ug/kg 180 34. 1 Di-n-octylphthalate ND ug/kg 180 34. 1 Di-n-octylphthalate ND ug/kg 180 31. 1 Dienbyl phthalate ND ug/kg 180 33. 1 Dienbyl phthalate ND ug/kg 180 38. 1 Benzo(a)anthracene ND ug/kg 180 38. 1	Fluoranthene	23	J	ug/kg	110	21.	1
Bis(2-chloroisopropyl)ether ND	4-Chlorophenyl phenyl ether	ND		ug/kg	180	19.	1
Bis(2-chloroethoxy)methane	4-Bromophenyl phenyl ether	ND		ug/kg	180	28.	1
Hexachlorobutadiene ND ug/kg 180 26. 1 Hexachlorocyclopentadiene ND ug/kg 520 160 1 Hexachlorocyclopentadiene ND ug/kg 140 29. 1 Hexachlorocyclopentadiene ND ug/kg 140 29. 1 Isophorone ND ug/kg 160 23. 1 Naphthalene ND ug/kg 180 22. 1 Nitrobenzene ND ug/kg 160 27. 1 NDPA/DPA ND ug/kg 140 20. 1 n-Nitrosodi-n-propylamine ND ug/kg 180 28. 1 Bis(2-ethylhexyl)phthalate ND ug/kg 180 62. 1 Butyl benzyl phthalate ND ug/kg 180 46. 1 Di-n-butylphthalate ND ug/kg 180 34. 1 Di-n-butylphthalate ND ug/kg 180 37.	Bis(2-chloroisopropyl)ether	ND		ug/kg	220	31.	1
Hexachlorocyclopentadiene ND	Bis(2-chloroethoxy)methane	ND		ug/kg	200	18.	1
Hexachloroethane ND	Hexachlorobutadiene	ND		ug/kg	180	26.	1
Sophorone ND	Hexachlorocyclopentadiene	ND		ug/kg	520	160	1
Naphthalene ND ug/kg 180 22. 1 Nitrobenzene ND ug/kg 160 27. 1 NDPA/DPA ND ug/kg 140 20. 1 n-Nitrosodi-n-propylamine ND ug/kg 180 28. 1 Bis(2-ethylhexyl)phthalate ND ug/kg 180 62. 1 Butyl benzyl phthalate ND ug/kg 180 46. 1 Di-n-butylphthalate ND ug/kg 180 34. 1 Di-n-cytylphthalate ND ug/kg 180 61. 1 Diethyl phthalate ND ug/kg 180 17. 1 Dimethyl phthalate ND ug/kg 180 38. 1 Benzo(a)anthracene ND ug/kg 110 20. 1	Hexachloroethane	ND		ug/kg	140	29.	1
Nitrobenzene ND ug/kg 160 27. 1 NDPA/DPA ND ug/kg 140 20. 1 n-Nitrosodi-n-propylamine ND ug/kg 180 28. 1 Bis(2-ethylhexyl)phthalate ND ug/kg 180 62. 1 Butyl benzyl phthalate ND ug/kg 180 46. 1 Di-n-butylphthalate ND ug/kg 180 34. 1 Di-n-octylphthalate ND ug/kg 180 61. 1 Diethyl phthalate ND ug/kg 180 17. 1 Dimethyl phthalate ND ug/kg 180 38. 1 Benzo(a)anthracene ND ug/kg 110 20. 1	Isophorone	ND		ug/kg	160	23.	1
NDPA/DPA ND ug/kg 140 20. 1 n-Nitrosodi-n-propylamine ND ug/kg 180 28. 1 Bis(2-ethylhexyl)phthalate ND ug/kg 180 62. 1 Butyl benzyl phthalate ND ug/kg 180 46. 1 Di-n-butylphthalate ND ug/kg 180 34. 1 Di-n-octylphthalate ND ug/kg 180 61. 1 Diethyl phthalate ND ug/kg 180 17. 1 Dimethyl phthalate ND ug/kg 180 38. 1 Benzo(a)anthracene ND ug/kg 110 20. 1	Naphthalene	ND		ug/kg	180	22.	1
ND	Nitrobenzene	ND		ug/kg	160	27.	1
Bis(2-ethylhexyl)phthalate	NDPA/DPA	ND		ug/kg	140	20.	1
Butyl benzyl phthalate ND ug/kg 180 46. 1 Di-n-butylphthalate ND ug/kg 180 34. 1 Di-n-octylphthalate ND ug/kg 180 61. 1 Diethyl phthalate ND ug/kg 180 17. 1 Dimethyl phthalate ND ug/kg 180 38. 1 Benzo(a)anthracene ND ug/kg 110 20. 1	n-Nitrosodi-n-propylamine	ND		ug/kg	180	28.	1
Di-n-butylphthalate ND ug/kg 180 34. 1 Di-n-octylphthalate ND ug/kg 180 61. 1 Diethyl phthalate ND ug/kg 180 17. 1 Dimethyl phthalate ND ug/kg 180 38. 1 Benzo(a)anthracene ND ug/kg 110 20. 1	Bis(2-ethylhexyl)phthalate	ND		ug/kg	180	62.	1
Di-n-octylphthalate ND ug/kg 180 61. 1 Diethyl phthalate ND ug/kg 180 17. 1 Dimethyl phthalate ND ug/kg 180 38. 1 Benzo(a)anthracene ND ug/kg 110 20. 1	Butyl benzyl phthalate	ND		ug/kg	180	46.	1
Diethyl phthalate ND ug/kg 180 17. 1 Dimethyl phthalate ND ug/kg 180 38. 1 Benzo(a)anthracene ND ug/kg 110 20. 1	Di-n-butylphthalate	ND		ug/kg	180	34.	1
Dimethyl phthalate ND ug/kg 180 38. 1 Benzo(a)anthracene ND ug/kg 110 20. 1	Di-n-octylphthalate	ND		ug/kg	180	61.	1
Benzo(a)anthracene ND ug/kg 110 20. 1	Diethyl phthalate	ND		ug/kg	180	17.	1
-55	Dimethyl phthalate	ND		ug/kg	180	38.	1
Benzo(a)pyrene ND ug/kg 140 44. 1	Benzo(a)anthracene	ND		ug/kg	110	20.	1
	Benzo(a)pyrene	ND		ug/kg	140	44.	1

Project Name: 641 WEST AVE (NIAGARA COUNTY) Lab Number: L1917600

Project Number: Not Specified Report Date: 05/10/19

SAMPLE RESULTS

Lab ID: L1917600-07 Date Collected: 04/29/19 12:30

Client ID: EB-9 Date Received: 04/29/19

Sample Location: 641 WEST AVE., LOCKPORT, NY Field Prep: Not Specified

Semivolatile Organics by GC/MS - Westbor Benzo(b)fluoranthene Benzo(k)fluoranthene	ough Lab ND ND					
			ug/kg	110	30.	1
			ug/kg	110	29.	1
Chrysene	ND		ug/kg	110	19.	1
Acenaphthylene	ND		ug/kg	140	28.	1
Anthracene	ND		ug/kg	110	35.	1
Benzo(ghi)perylene	ND		ug/kg	140	21.	1
Fluorene	ND		ug/kg	180	18.	1
Phenanthrene	ND		ug/kg	110	22.	1
Dibenzo(a,h)anthracene	ND		ug/kg	110	21.	1
Indeno(1,2,3-cd)pyrene	ND		ug/kg	140	25.	1
Pyrene	18	J	ug/kg	110	18.	1
Biphenyl	ND		ug/kg	410	42.	1
4-Chloroaniline	ND		ug/kg	180	33.	1
2-Nitroaniline	ND		ug/kg	180	35.	1
3-Nitroaniline	ND		ug/kg	180	34.	1
4-Nitroaniline	ND		ug/kg	180	75.	1
	ND		ug/kg	180	17.	1
2-Methylnaphthalene	ND		ug/kg	220	22.	1
1,2,4,5-Tetrachlorobenzene	ND		ug/kg	180	19.	1
Acetophenone	ND		ug/kg	180	22.	1
2,4,6-Trichlorophenol	ND		ug/kg	110	34.	1
p-Chloro-m-cresol	ND		ug/kg	180	27.	1
2-Chlorophenol	ND		ug/kg	180	21.	1
2,4-Dichlorophenol	ND		ug/kg	160	29.	1
2,4-Dimethylphenol	ND		ug/kg	180	60.	1
2-Nitrophenol	ND		ug/kg	390	68.	1
4-Nitrophenol	ND		ug/kg	250	74.	1
2,4-Dinitrophenol	ND		ug/kg	870	84.	1
4,6-Dinitro-o-cresol	ND		ug/kg	470	87.	1
Pentachlorophenol	ND		ug/kg	140	40.	1
Phenol	ND		ug/kg	180	27.	1
2-Methylphenol	ND		ug/kg	180	28.	1
3-Methylphenol/4-Methylphenol	ND		ug/kg	260	28.	1
2,4,5-Trichlorophenol	ND		ug/kg	180	35.	1
Carbazole	ND		ug/kg	180	18.	1
Atrazine	ND		ug/kg	140	63.	1
Benzaldehyde	ND		ug/kg	240	49.	1

Project Name: 641 WEST AVE (NIAGARA COUNTY) Lab Number: L1917600

Project Number: Not Specified

SAMPLE RESULTS

Report Date: 05/10/19

Lab ID: L1917600-07 Date Collected: 04/29/19 12:30

Client ID: Date Received: 04/29/19 EB-9 Sample Location: 641 WEST AVE., LOCKPORT, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS	- Westborough Lab						
Caprolactam	ND		ug/kg	180	55.	1	
2,3,4,6-Tetrachlorophenol	ND		ug/kg	180	36.	1	

Acceptance Qualifier Criteria
25-120
10-120
23-120
30-120
10-136
18-120

Project Name: 641 WEST AVE (NIAGARA COUNTY)

Project Number: Not Specified

Lab Number:

L1917600

Report Date: 05/10/19

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 05/06/19 21:16

Analyst: SZ

Extraction Method: EPA 3546
Extraction Date: 05/05/19 05:10

arameter	Result	Qualifier	Units	RL		MDL
semivolatile Organics by GC/MS -	Westborough	Lab for s	ample(s):	01-07	Batch:	WG1233745-1
Acenaphthene	ND		ug/kg	130		17.
Hexachlorobenzene	ND		ug/kg	98		18.
Bis(2-chloroethyl)ether	ND		ug/kg	150		22.
2-Chloronaphthalene	ND		ug/kg	160		16.
3,3'-Dichlorobenzidine	ND		ug/kg	160		44.
2,4-Dinitrotoluene	ND		ug/kg	160		33.
2,6-Dinitrotoluene	ND		ug/kg	160		28.
Fluoranthene	ND		ug/kg	98		19.
4-Chlorophenyl phenyl ether	ND		ug/kg	160		18.
4-Bromophenyl phenyl ether	ND		ug/kg	160		25.
Bis(2-chloroisopropyl)ether	ND		ug/kg	200		28.
Bis(2-chloroethoxy)methane	ND		ug/kg	180		16.
Hexachlorobutadiene	ND		ug/kg	160		24.
Hexachlorocyclopentadiene	ND		ug/kg	470		150
Hexachloroethane	ND		ug/kg	130		26.
Isophorone	ND		ug/kg	150		21.
Naphthalene	ND		ug/kg	160		20.
Nitrobenzene	ND		ug/kg	150		24.
NDPA/DPA	ND		ug/kg	130		19.
n-Nitrosodi-n-propylamine	ND		ug/kg	160		25.
Bis(2-ethylhexyl)phthalate	ND		ug/kg	160		57.
Butyl benzyl phthalate	ND		ug/kg	160		41.
Di-n-butylphthalate	ND		ug/kg	160		31.
Di-n-octylphthalate	ND		ug/kg	160		56.
Diethyl phthalate	ND		ug/kg	160		15.
Dimethyl phthalate	ND		ug/kg	160		34.
Benzo(a)anthracene	ND		ug/kg	98		18.
Benzo(a)pyrene	ND		ug/kg	130		40.
Benzo(b)fluoranthene	ND		ug/kg	98		28.

L1917600

Lab Number:

Project Name: 641 WEST AVE (NIAGARA COUNTY)

Project Number: Not Specified Report Date: 05/10/19

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8270D Extraction Method: EPA 3546
Analytical Date: 05/06/19 21:16 Extraction Date: 05/05/19 05:10

Analyst: SZ

Parameter	Result	Qualifier	Units	RL		MDL
Semivolatile Organics by GC/MS	- Westborough	Lab for s	ample(s):	01-07	Batch:	WG1233745-1
Benzo(k)fluoranthene	ND		ug/kg	98		26.
Chrysene	ND		ug/kg	98		17.
Acenaphthylene	ND		ug/kg	130		25.
Anthracene	ND		ug/kg	98		32.
Benzo(ghi)perylene	ND		ug/kg	130		19.
Fluorene	ND		ug/kg	160		16.
Phenanthrene	ND		ug/kg	98		20.
Dibenzo(a,h)anthracene	ND		ug/kg	98		19.
Indeno(1,2,3-cd)pyrene	ND		ug/kg	130		23.
Pyrene	ND		ug/kg	98		16.
Biphenyl	ND		ug/kg	370		38.
4-Chloroaniline	ND		ug/kg	160		30.
2-Nitroaniline	ND		ug/kg	160		32.
3-Nitroaniline	ND		ug/kg	160		31.
4-Nitroaniline	ND		ug/kg	160		68.
Dibenzofuran	ND		ug/kg	160		16.
2-Methylnaphthalene	ND		ug/kg	200		20.
1,2,4,5-Tetrachlorobenzene	ND		ug/kg	160		17.
Acetophenone	ND		ug/kg	160		20.
2,4,6-Trichlorophenol	ND		ug/kg	98		31.
p-Chloro-m-cresol	ND		ug/kg	160		24.
2-Chlorophenol	ND		ug/kg	160		19.
2,4-Dichlorophenol	ND		ug/kg	150		26.
2,4-Dimethylphenol	ND		ug/kg	160		54.
2-Nitrophenol	ND		ug/kg	350		62.
4-Nitrophenol	ND		ug/kg	230		67.
2,4-Dinitrophenol	ND		ug/kg	790		76.
4,6-Dinitro-o-cresol	ND		ug/kg	430		79.
Pentachlorophenol	ND		ug/kg	130		36.

L1917600

Lab Number:

Project Name: 641 WEST AVE (NIAGARA COUNTY)

Project Number: Not Specified **Report Date:** 05/10/19

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Extraction Method: EPA 3546 Analytical Date: 05/06/19 21:16 05/05/19 05:10 Extraction Date:

Analyst: SZ

Parameter	Result	Qualifier	Units	RL		MDL	
Semivolatile Organics by GC/MS	6 - Westborougl	h Lab for s	ample(s):	01-07	Batch:	WG1233745-1	
Phenol	ND		ug/kg	160		25.	
2-Methylphenol	ND		ug/kg	160		25.	_
3-Methylphenol/4-Methylphenol	ND		ug/kg	240		26.	
2,4,5-Trichlorophenol	ND		ug/kg	160		31.	
Carbazole	ND		ug/kg	160		16.	
Atrazine	ND		ug/kg	130		57.	
Benzaldehyde	ND		ug/kg	220		44.	
Caprolactam	ND		ug/kg	160		50.	
2,3,4,6-Tetrachlorophenol	ND		ug/kg	160		33.	

	Acceptance
%Recovery	Qualifier Criteria
65	25-120
65	10-120
67	23-120
67	30-120
62	10-136
70	18-120
	65 65 67 67 62

Project Name: 641 WEST AVE (NIAGARA COUNTY)

Project Number: Not Specified

Lab Number: L1917600

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS	- Westborough Lab Asso	ciated sample(s)	: 01-07 Batc	h: WG1233	3745-2 WG12337	745-3	
Acenaphthene	43		47		31-137	9	50
Hexachlorobenzene	43		47		40-140	9	50
Bis(2-chloroethyl)ether	44		49		40-140	11	50
2-Chloronaphthalene	48		52		40-140	8	50
3,3'-Dichlorobenzidine	34	Q	35	Q	40-140	3	50
2,4-Dinitrotoluene	48		52		40-132	8	50
2,6-Dinitrotoluene	52		56		40-140	7	50
Fluoranthene	49		53		40-140	8	50
4-Chlorophenyl phenyl ether	43		47		40-140	9	50
4-Bromophenyl phenyl ether	44		48		40-140	9	50
Bis(2-chloroisopropyl)ether	47		53		40-140	12	50
Bis(2-chloroethoxy)methane	48		52		40-117	8	50
Hexachlorobutadiene	43		48		40-140	11	50
Hexachlorocyclopentadiene	40		44		40-140	10	50
Hexachloroethane	43		48		40-140	11	50
Isophorone	49		55		40-140	12	50
Naphthalene	45		51		40-140	13	50
Nitrobenzene	48		53		40-140	10	50
NDPA/DPA	45		48		36-157	6	50
n-Nitrosodi-n-propylamine	48		55		32-121	14	50
Bis(2-ethylhexyl)phthalate	46		50		40-140	8	50
Butyl benzyl phthalate	50		52		40-140	4	50
Di-n-butylphthalate	49		53		40-140	8	50

Project Name: 641 WEST AVE (NIAGARA COUNTY)

Project Number: Not Specified

Lab Number: L1917600

Parameter	LCS %Recovery	Qual	LCSI %Recov		%Recovery Qual Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS - Westbord	ough Lab Assoc	iated sample(s):	01-07	Batch:	WG1233745-2 WG12337	45-3	
Di-n-octylphthalate	48		51		40-140	6	50
Diethyl phthalate	44		48		40-140	9	50
Dimethyl phthalate	48		53		40-140	10	50
Benzo(a)anthracene	48		51		40-140	6	50
Benzo(a)pyrene	46		48		40-140	4	50
Benzo(b)fluoranthene	48		50		40-140	4	50
Benzo(k)fluoranthene	49		50		40-140	2	50
Chrysene	48		49		40-140	2	50
Acenaphthylene	49		54		40-140	10	50
Anthracene	50		53		40-140	6	50
Benzo(ghi)perylene	47		50		40-140	6	50
Fluorene	44		48		40-140	9	50
Phenanthrene	48		52		40-140	8	50
Dibenzo(a,h)anthracene	46		49		40-140	6	50
Indeno(1,2,3-cd)pyrene	46		50		40-140	8	50
Pyrene	50		53		35-142	6	50
Biphenyl	50	Q	55		54-104	10	50
4-Chloroaniline	42		47		40-140	11	50
2-Nitroaniline	52		59		47-134	13	50
3-Nitroaniline	38		41		26-129	8	50
4-Nitroaniline	44		47		41-125	7	50
Dibenzofuran	44		48		40-140	9	50
2-Methylnaphthalene	47		52		40-140	10	50

Project Name: 641 WEST AVE (NIAGARA COUNTY)

Project Number: Not Specified

Lab Number: L1917600

Parameter	LCS %Recovery	Qual	LCSI %Recov		Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Semivolatile Organics by GC/MS - Westb	orough Lab Assoc	iated sample(s):	01-07	Batch:	WG123374	15-2 WG1233	745-3			
1,2,4,5-Tetrachlorobenzene	48		54			40-117	12		50	
Acetophenone	48		55			14-144	14		50	
2,4,6-Trichlorophenol	51		57			30-130	11		50	
p-Chloro-m-cresol	50		54			26-103	8		50	
2-Chlorophenol	48		53			25-102	10		50	
2,4-Dichlorophenol	51		56			30-130	9		50	
2,4-Dimethylphenol	49		55			30-130	12		50	
2-Nitrophenol	51		56			30-130	9		50	
4-Nitrophenol	49		57			11-114	15		50	
2,4-Dinitrophenol	40		46			4-130	14		50	
4,6-Dinitro-o-cresol	52		56			10-130	7		50	
Pentachlorophenol	42		45			17-109	7		50	
Phenol	44		50			26-90	13		50	
2-Methylphenol	49		53			30-130.	8		50	
3-Methylphenol/4-Methylphenol	48		54			30-130	12		50	
2,4,5-Trichlorophenol	50		56			30-130	11		50	
Carbazole	50	Q	53		Q	54-128	6		50	
Atrazine	47		51			40-140	8		50	
Benzaldehyde	48		53			40-140	10		50	
Caprolactam	60		67			15-130	11		50	
2,3,4,6-Tetrachlorophenol	44		48			40-140	9		50	

Project Name: 641 WEST AVE (NIAGARA COUNTY)

Lab Number: L1917600

Project Number: Not Specified Report Date:

05/10/19

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-07 Batch: WG1233745-2 WG1233745-3

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
2-Fluorophenol	43	47	25-120
Phenol-d6	44	49	10-120
Nitrobenzene-d5	46	51	23-120
2-Fluorobiphenyl	45	49	30-120
2,4,6-Tribromophenol	41	45	10-136
4-Terphenyl-d14	46	49	18-120

Project Name: 641 WEST AVE (NIAGARA COUNTY)

Project Number: Not Specified

Lab Number:

L1917600

Report Date:

05/10/19

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Recovery Qual Limits	RPD	RPD Qual Limits
Semivolatile Organics by GO ID: EB-9	C/MS - Westbor	ough Lab	Associated sar	mple(s): 01-07	QC Batch ID: WG1	233745-4 WC	91233745-5 QC Sa	mple: L	_1917600-07 Client
Acenaphthene	ND	1450	1100	76	940	65	31-137	16	50
Hexachlorobenzene	ND	1450	1200	83	960	66	40-140	22	50
Bis(2-chloroethyl)ether	ND	1450	1100	76	970	67	40-140	13	50
2-Chloronaphthalene	ND	1450	1200	83	1000	69	40-140	18	50
3,3'-Dichlorobenzidine	ND	1450	1200	83	930	64	40-140	25	50
2,4-Dinitrotoluene	ND	1450	1200	83	930	64	40-132	25	50
2,6-Dinitrotoluene	ND	1450	1300	90	1100	76	40-140	17	50
Fluoranthene	23J	1450	1400	97	1100	76	40-140	24	50
4-Chlorophenyl phenyl ether	ND	1450	1100	76	930	64	40-140	17	50
4-Bromophenyl phenyl ether	ND	1450	1200	83	940	65	40-140	24	50
Bis(2-chloroisopropyl)ether	ND	1450	1100	76	940	65	40-140	16	50
Bis(2-chloroethoxy)methane	ND	1450	1200	83	1000	69	40-117	18	50
Hexachlorobutadiene	ND	1450	1100	76	940	65	40-140	16	50
Hexachlorocyclopentadiene	ND	1450	710	49	620	43	40-140	14	50
Hexachloroethane	ND	1450	980	68	930	64	40-140	5	50
Isophorone	ND	1450	1200	83	1000	69	40-140	18	50
Naphthalene	ND	1450	1200	83	1000	69	40-140	18	50
Nitrobenzene	ND	1450	1200	83	1100	76	40-140	9	50
NDPA/DPA	ND	1450	1200	83	950	66	36-157	23	50
n-Nitrosodi-n-propylamine	ND	1450	1200	83	1000	69	32-121	18	50
Bis(2-ethylhexyl)phthalate	ND	1450	1400	97	1000	69	40-140	33	50
Butyl benzyl phthalate	ND	1450	1300	90	1100	76	40-140	17	50
Di-n-butylphthalate	ND	1450	1300	90	1000	69	40-140	26	50

Project Name: 641 WEST AVE (NIAGARA COUNTY)

Project Number: Not Specified

Lab Number:

L1917600

Report Date:

05/10/19

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Recovery Qual Limits	RPD	RPD Qual Limits
Semivolatile Organics by GID: EB-9	C/MS - Westbor	ough Lab	Associated sar	mple(s): 01-07	QC Batch ID: WG1	233745-4 WC	91233745-5 QC Sa	ımple: l	_1917600-07 Client
Di-n-octylphthalate	ND	1450	1400	97	1100	76	40-140	24	50
Diethyl phthalate	ND	1450	1200	83	940	65	40-140	24	50
Dimethyl phthalate	ND	1450	1300	90	1000	69	40-140	26	50
Benzo(a)anthracene	ND	1450	1300	90	1000	69	40-140	26	50
Benzo(a)pyrene	ND	1450	1200	83	950	66	40-140	23	50
Benzo(b)fluoranthene	ND	1450	1200	83	970	67	40-140	21	50
Benzo(k)fluoranthene	ND	1450	1200	83	1000	69	40-140	18	50
Chrysene	ND	1450	1200	83	990	68	40-140	19	50
Acenaphthylene	ND	1450	1300	90	1100	76	40-140	17	50
Anthracene	ND	1450	1300	90	1100	76	40-140	17	50
Benzo(ghi)perylene	ND	1450	1200	83	990	68	40-140	19	50
Fluorene	ND	1450	1100	76	950	66	40-140	15	50
Phenanthrene	ND	1450	1300	90	1000	69	40-140	26	50
Dibenzo(a,h)anthracene	ND	1450	1200	83	980	68	40-140	20	50
Indeno(1,2,3-cd)pyrene	ND	1450	1200	83	1000	69	40-140	18	50
Pyrene	18J	1450	1400	97	1100	76	35-142	24	50
Biphenyl	ND	1450	1300	90	1100	76	54-104	17	50
4-Chloroaniline	ND	1450	700	48	610	42	40-140	14	50
2-Nitroaniline	ND	1450	1400	97	1200	83	47-134	15	50
3-Nitroaniline	ND	1450	1200	83	980	68	26-129	20	50
4-Nitroaniline	ND	1450	1300	90	1100	76	41-125	17	50
Dibenzofuran	ND	1450	1200	83	960	66	40-140	22	50
2-Methylnaphthalene	ND	1450	1200	83	1000	69	40-140	18	50

Project Name: 641 WEST AVE (NIAGARA COUNTY)

Project Number: Not Specified

Lab Number:

L1917600

Report Date:

05/10/19

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Recovery Qual Limits	RPD	RPD Qual Limits
Semivolatile Organics by GO ID: EB-9	C/MS - Westbor	ough Lab	Associated sa	mple(s): 01-07	QC Batch ID: WG1	233745-4 WO	91233745-5 QC Sa	mple: I	_1917600-07 Client
1,2,4,5-Tetrachlorobenzene	ND	1450	1300	90	1100	76	40-117	17	50
Acetophenone	ND	1450	1200	83	1100	76	14-144	9	50
2,4,6-Trichlorophenol	ND	1450	1400	97	1200	83	30-130	15	50
p-Chloro-m-cresol	ND	1450	1300	90	1100	76	26-103	17	50
2-Chlorophenol	ND	1450	1200	83	1100	76	25-102	9	50
2,4-Dichlorophenol	ND	1450	1300	90	1200	83	30-130	8	50
2,4-Dimethylphenol	ND	1450	1100	76	980	68	30-130	12	50
2-Nitrophenol	ND	1450	1100	76	960	66	30-130	14	50
4-Nitrophenol	ND	1450	1200	83	1000	69	11-114	18	50
2,4-Dinitrophenol	ND	1450	150J	10	140J	10	4-130	7	50
4,6-Dinitro-o-cresol	ND	1450	320J	22	270J	19	10-130	17	50
Pentachlorophenol	ND	1450	1200	83	1000	69	17-109	18	50
Phenol	ND	1450	1200	83	1000	69	26-90	18	50
2-Methylphenol	ND	1450	1200	83	1100	76	30-130.	9	50
3-Methylphenol/4-Methylphenol	ND	1450	1200	83	1100	76	30-130	9	50
2,4,5-Trichlorophenol	ND	1450	1400	97	1200	83	30-130	15	50
Carbazole	ND	1450	1300	90	1100	76	54-128	17	50
Atrazine	ND	1450	1400	97	1100	76	40-140	24	50
Benzaldehyde	ND	1450	1100	76	1000	69	40-140	10	50
Caprolactam	ND	1450	1400	97	1200	83	15-130	15	50
2,3,4,6-Tetrachlorophenol	ND	1450	1200	83	1000	69	40-140	18	50

Project Name: 641 WEST AVE (NIAGARA COUNTY)

Project Number: Not Specified

Lab Number:

L1917600

Report Date:

05/10/19

	Native	MS	MS	MS		MSD	MSD		Recovery	•		RPD
Parameter	Sample	Added	Found	%Recovery	Qual	Found	%Recovery	Qual	Limits	RPD	Qual	Limits

Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-07 QC Batch ID: WG1233745-4 WG1233745-5 QC Sample: L1917600-07 Client

ID: EB-9

	MS	MSD	Acceptance
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria
2,4,6-Tribromophenol	92	76	10-136
2-Fluorobiphenyl	88	74	30-120
2-Fluorophenol	81	74	25-120
4-Terphenyl-d14	92	74	18-120
Nitrobenzene-d5	88	77	23-120
Phenol-d6	81	72	10-120

INORGANICS & MISCELLANEOUS

Project Name: 641 WEST AVE (NIAGARA COUNTY) Lab Number: L1917600

Project Number: Not Specified Report Date: 05/10/19

SAMPLE RESULTS

Lab ID: L1917600-01 Date Collected: 04/29/19 09:00

Client ID: EB-1 Date Received: 04/29/19

Sample Location: 641 WEST AVE., LOCKPORT, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab									
Solids, Total	85.8		%	0.100	NA	1	-	04/30/19 13:42	121,2540G	RI

Project Name: 641 WEST AVE (NIAGARA COUNTY) Lab Number: L1917600

Project Number: Not Specified Report Date: 05/10/19

SAMPLE RESULTS

Lab ID: L1917600-02 Date Collected: 04/29/19 09:00

Client ID: DUP (EB-1) Date Received: 04/29/19
Sample Location: 641 WEST AVE., LOCKPORT, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab									
Solids, Total	79.4		%	0.100	NA	1	-	04/30/19 13:42	121,2540G	RI

Project Name: 641 WEST AVE (NIAGARA COUNTY) Lab Number: L1917600

Project Number: Not Specified Report Date: 05/10/19

SAMPLE RESULTS

Lab ID: L1917600-03 Date Collected: 04/29/19 10:20

Client ID: EB-3 Date Received: 04/29/19

Sample Location: 641 WEST AVE., LOCKPORT, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result (Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab									
Solids, Total	88.2		%	0.100	NA	1	-	04/30/19 13:42	121,2540G	RI

Project Name: 641 WEST AVE (NIAGARA COUNTY) Lab Number: L1917600

Project Number: Not Specified Report Date: 05/10/19

SAMPLE RESULTS

Lab ID: L1917600-04 Date Collected: 04/29/19 10:40

Client ID: EB-4 Date Received: 04/29/19

Sample Location: 641 WEST AVE., LOCKPORT, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - '	Westborough Lab)								
Solids, Total	91.3		%	0.100	NA	1	-	04/30/19 13:42	121,2540G	RI

Project Name: 641 WEST AVE (NIAGARA COUNTY) Lab Number: L1917600

Project Number: Not Specified Report Date: 05/10/19

SAMPLE RESULTS

Lab ID: L1917600-05 Date Collected: 04/29/19 11:05

Client ID: EB-5 Date Received: 04/29/19
Sample Location: 641 WEST AVE., LOCKPORT, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Westborough Lab)								
Solids, Total	79.9		%	0.100	NA	1	-	04/30/19 13:42	121,2540G	RI

Project Name: 641 WEST AVE (NIAGARA COUNTY) Lab Number: L1917600

Project Number: Not Specified Report Date: 05/10/19

SAMPLE RESULTS

Lab ID: L1917600-06 Date Collected: 04/29/19 11:40

Client ID: EB-7 Date Received: 04/29/19

Sample Location: 641 WEST AVE., LOCKPORT, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - \	Westborough Lab)								
Solids, Total	88.5		%	0.100	NA	1	-	04/30/19 13:42	121,2540G	RI

Project Name: 641 WEST AVE (NIAGARA COUNTY) Lab Number: L1917600

Project Number: Not Specified Report Date: 05/10/19

SAMPLE RESULTS

Lab ID: L1917600-07 Date Collected: 04/29/19 12:30

Client ID: EB-9 Date Received: 04/29/19
Sample Location: 641 WEST AVE., LOCKPORT, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab									
Solids, Total	90.8		%	0.100	NA	1	-	04/30/19 13:42	121,2540G	RI

L1917600

Lab Number:

Lab Duplicate Analysis

Batch Quality Control

Project Name: 641 WEST AVE (NIAGARA COUNTY)

Report Date:

05/10/19 **Project Number:** Not Specified

Parameter	Native San	nple [Duplicate Sample	Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab Associated samp	le(s): 01-07	QC Batch ID:	WG1231933-1	QC Sample:	L1917600-07	Client ID:	EB-9
Solids, Total	90.8		90.3	%	1		20

Project Name: 641 WEST AVE (NIAGARA COUNTY)

Project Number: Not Specified

Lab Number: L1917600
Report Date: 05/10/19

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler Custody Seal

A Absent

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1917600-01A	Vial MeOH preserved	Α	NA		2.7	Υ	Absent		NYTCL-8260HLW-R2(14)
L1917600-01B	Vial water preserved	Α	NA		2.7	Υ	Absent	30-APR-19 05:25	NYTCL-8260HLW-R2(14)
L1917600-01C	Vial water preserved	Α	NA		2.7	Υ	Absent	30-APR-19 05:25	NYTCL-8260HLW-R2(14)
L1917600-01D	Plastic 2oz unpreserved for TS	Α	NA		2.7	Υ	Absent		TS(7)
L1917600-01E	Glass 120ml/4oz unpreserved	Α	NA		2.7	Υ	Absent		NYTCL-8270(14)
L1917600-02A	Vial MeOH preserved	Α	NA		2.7	Υ	Absent		NYTCL-8260HLW-R2(14)
L1917600-02B	Vial water preserved	Α	NA		2.7	Υ	Absent	30-APR-19 05:25	NYTCL-8260HLW-R2(14)
L1917600-02C	Vial water preserved	Α	NA		2.7	Υ	Absent	30-APR-19 05:25	NYTCL-8260HLW-R2(14)
L1917600-02D	Plastic 2oz unpreserved for TS	Α	NA		2.7	Υ	Absent		TS(7)
L1917600-02E	Glass 120ml/4oz unpreserved	Α	NA		2.7	Υ	Absent		NYTCL-8270(14)
L1917600-03A	Vial MeOH preserved	Α	NA		2.7	Υ	Absent		NYTCL-8260HLW-R2(14)
L1917600-03B	Vial water preserved	Α	NA		2.7	Υ	Absent	30-APR-19 05:25	NYTCL-8260HLW-R2(14)
L1917600-03C	Vial water preserved	Α	NA		2.7	Υ	Absent	30-APR-19 05:25	NYTCL-8260HLW-R2(14)
L1917600-03D	Plastic 2oz unpreserved for TS	Α	NA		2.7	Υ	Absent		TS(7)
L1917600-03E	Glass 120ml/4oz unpreserved	Α	NA		2.7	Υ	Absent		NYTCL-8270(14)
L1917600-04A	Vial MeOH preserved	Α	NA		2.7	Υ	Absent		NYTCL-8260HLW-R2(14)
L1917600-04B	Vial water preserved	Α	NA		2.7	Υ	Absent	30-APR-19 05:25	NYTCL-8260HLW-R2(14)
L1917600-04C	Vial water preserved	Α	NA		2.7	Υ	Absent	30-APR-19 05:25	NYTCL-8260HLW-R2(14)
L1917600-04D	Plastic 2oz unpreserved for TS	Α	NA		2.7	Υ	Absent		TS(7)
L1917600-04E	Glass 120ml/4oz unpreserved	Α	NA		2.7	Υ	Absent		NYTCL-8270(14)
L1917600-05A	Vial MeOH preserved	Α	NA		2.7	Υ	Absent		NYTCL-8260HLW-R2(14)
L1917600-05B	Vial water preserved	Α	NA		2.7	Υ	Absent	30-APR-19 05:25	NYTCL-8260HLW-R2(14)
L1917600-05C	Vial water preserved	Α	NA		2.7	Υ	Absent	30-APR-19 05:25	NYTCL-8260HLW-R2(14)

Lab Number: L1917600

Report Date: 05/10/19

Project Name: 641 WEST AVE (NIAGARA COUNTY)

Project Number: Not Specified

Container li	Container Information			Final	Temp			Frozen	
Container II	D Container Type	Cooler	рН	pН	-	Pres	Seal	Date/Time	Analysis(*)
L1917600-05D	Plastic 2oz unpreserved for TS	Α	NA		2.7	Υ	Absent		TS(7)
L1917600-05E	Glass 120ml/4oz unpreserved	Α	NA		2.7	Υ	Absent		NYTCL-8270(14)
L1917600-06A	Vial MeOH preserved	Α	NA		2.7	Υ	Absent		NYTCL-8260HLW-R2(14)
L1917600-06B	Vial water preserved	Α	NA		2.7	Υ	Absent	30-APR-19 05:25	NYTCL-8260HLW-R2(14)
L1917600-06C	Vial water preserved	Α	NA		2.7	Υ	Absent	30-APR-19 05:25	NYTCL-8260HLW-R2(14)
L1917600-06D	Plastic 2oz unpreserved for TS	Α	NA		2.7	Υ	Absent		TS(7)
L1917600-06E	Glass 120ml/4oz unpreserved	Α	NA		2.7	Υ	Absent		NYTCL-8270(14)
L1917600-07A	Vial MeOH preserved	Α	NA		2.7	Υ	Absent		NYTCL-8260HLW-R2(14)
L1917600-07A1	Vial MeOH preserved	Α	NA		2.7	Υ	Absent		NYTCL-8260HLW-R2(14)
L1917600-07A2	Vial MeOH preserved	Α	NA		2.7	Υ	Absent		NYTCL-8260HLW-R2(14)
L1917600-07B	Vial water preserved	Α	NA		2.7	Υ	Absent	30-APR-19 05:25	NYTCL-8260HLW-R2(14)
L1917600-07B1	Vial water preserved	Α	NA		2.7	Υ	Absent	30-APR-19 05:25	NYTCL-8260HLW-R2(14)
L1917600-07B2	Vial water preserved	Α	NA		2.7	Υ	Absent	30-APR-19 05:25	NYTCL-8260HLW-R2(14)
L1917600-07C	Vial water preserved	Α	NA		2.7	Υ	Absent	30-APR-19 05:25	NYTCL-8260HLW-R2(14)
L1917600-07C1	Vial water preserved	Α	NA		2.7	Υ	Absent	30-APR-19 05:25	NYTCL-8260HLW-R2(14)
L1917600-07C2	Vial water preserved	Α	NA		2.7	Υ	Absent	30-APR-19 05:25	NYTCL-8260HLW-R2(14)
L1917600-07D	Plastic 2oz unpreserved for TS	Α	NA		2.7	Υ	Absent		TS(7)
L1917600-07D1	Plastic 2oz unpreserved for TS	Α	NA		2.7	Υ	Absent		TS(7)
L1917600-07D2	Plastic 2oz unpreserved for TS	Α	NA		2.7	Υ	Absent		TS(7)
L1917600-07E	Glass 120ml/4oz unpreserved	Α	NA		2.7	Υ	Absent		NYTCL-8270(14)
L1917600-07E1	Glass 120ml/4oz unpreserved	Α	NA		2.7	Υ	Absent		NYTCL-8270(14)
L1917600-07E2	Glass 120ml/4oz unpreserved	Α	NA		2.7	Υ	Absent		NYTCL-8270(14)

Project Name: Lab Number: 641 WEST AVE (NIAGARA COUNTY) L1917600 **Project Number:** Not Specified **Report Date:** 05/10/19

GLOSSARY

Acronyms

LCSD

LOD

LOQ

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments

from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration. **EPA**

Environmental Protection Agency

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content,

where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

> - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated

using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

values; although the RPD value will be provided in the report.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations

Footnotes

Report Format: DU Report with 'J' Qualifiers

Project Name: 641 WEST AVE (NIAGARA COUNTY) Lab Number: L1917600

Project Number: Not Specified Report Date: 05/10/19

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

1

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.

Report Format: DU Report with 'J' Qualifiers

Project Name:641 WEST AVE (NIAGARA COUNTY)Lab Number:L1917600Project Number:Not SpecifiedReport Date:05/10/19

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Serial No:05101918:15

ID No.:17873 Revision 12

Page 1 of 1

Published Date: 10/9/2018 4:58:19 PM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 6860: SCM: Perchlorate

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

Дірна	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitne Albany, NY 12205: 14 Walker Tonawanda, NY 14150: 275 C	Way	5	Page / of		1	Date I		4/30	3/19		ALPHA Job# 4917600	5
Westborough, MA 01581	Mansfield, MA 02048	Project Information			W. Street		Deliv	erables	_	10	1		Billing Information	
8 Walkup Dr. TEL: 508-898-9220	320 Forbes Blvd TEL: 508-822-9300		see Aut		(aucti)		-	ASP-		V	ASP-B		Same as Client In	fo
FAX: 508-898-9193	FAX: 508-822-3288	Project Name: 64 C	LIST AVE	1. AS HOLE !	T W				(1 File)	A		(4 File)	PO#	
CONTRACTOR OF THE PROPERTY OF			WEST AVE.	LOUGOS	NY		1	Other	, (, , ,,,,)	-		(11110)	1.50	
Client Information		Project #					ALC: UNKNOWN	CHARLEST IN	Dam Jean	Cast	4000	100 11	Disposal Site Informati	00
Client: C25 FNS		(Use Project name as F					MISSERIE	MARKEDAN	Requiren	CONTRACT OF THE PARTY OF THE PA	AUV Day	275		200
Address: 141 ELN S		Project Manager: Co.	Dy MARK	1.0			님	NY TO		X			Please identify below local applicable disposal facilities	
LUMANO 1	4	ALPHAQuote #:		AND DESCRIPTION				Law Year	tandards		NY CP	51		
Phone:		Turn-Around Time		1	MAGNETON .	To Part Street	닏		stricted Us	73	Other		Disposal Facility:	
Fax:		Standa	Carrier Co.	Due Date:			Ш		restricted				□ NJ 😡 N	ϵ
Email: Rhinketo	Chaj com	Rush (only if pre approve	d)	# of Days:				NYCS	ewer Disc	harge			Other:	- Linear
These samples have be	een previously analyz	ed by Alpha					ANA	LYSIS					Sample Filtration	T
Other project specific Please specify Metals							8240	100					☐ Done ☐ Lab to do Preservation ☐ Lab to do (Please Specify below	a I B o t
ALPHA Lab ID		ample ID Collection		ection	Sample Sampler's		3	25/20						
(Lab Use Only)	0.	simple to	Date	Time	Matrix	Initials	7	13	٢.				Sample Specific Comme	ents a
17600 -01	E3-1		4/29/19	9:00	Soil	RB	1	X	V					5
	Dup(£3-1)		4/24/14	9:00	Soil	nn	x	9	4					5
- 03			4/24/19	10:20	Sot	033	×	4	4					5
- 04	EB-4		4/29/14	10:46	SXI	nB	V	4	4					5
05			11/19/19	11:08	Soil	RB	Y	4	4					5
- 06			11/24/19	11:40	Soil	RB	×	4	¥					5
- 87	68-9		4/24/19	12:30	Soil	18	×	4	¥					3
- 07	MS/EB.8		11/70/19	1230	Soil	128	×	4	4					5
	1150 (EB.9)		4/29/19	12:30	Soil	M	4	4	4			6 6		8
	Hey Care		14/11	10.00		1-2	-		/					
Preservative Code: A = None B = HCl C = HNO ₃ D = H ₂ SO ₄	Container Code P = Plastic A = Amber Glass V = Vial G = Glass	Westboro: Certification No: MA935 Mansfield: Certification No: MA015			Container Type Preservative		V	A	ρ				Please print clearly, and completely. Sai not be logged in and turnaround time clo	
E = NaOH	B = Bacteria Cup						FOA A						start until any ambig	
F = MeOH G = NaHSO ₄	C = Cube O = Other			Received By: Date/Time				resolved. BY EXEC						
G = Na ₂ S ₂ O ₃ H = Na ₂ S ₂ O ₃ K/E = Zn Ac/NaOH O = Other	E = Encore D = BOD Bottle	Salperta	AM	4/29/19	14:30		A	·A-	ARC		28/19	0030	I II to I ter to I till to I t	GREES ALPHA'S
Form No: 01-25 HC (rev. 3)	0-Sent-2013)												(See reverse side.)	

APPENDIX C

Laboratory Analytical Reports - Groundwater

ANALYTICAL REPORT

Lab Number: L1917771

Client: C&S Companies

141 Elm Street, Suite 100

Buffalo, NY 14203

ATTN: Cody Martin
Phone: (716) 847-1630

Project Name: 641 WEST AVE (NIAGARA COUNTY)

Project Number: Not Specified Report Date: 05/10/19

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: 641 WEST AVE (NIAGARA COUNTY)

Project Number: Not Specified

Lab Number:

L1917771

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1917771-01	MW-1	WATER	641 WEST AVE, LOCKPORT, NY	04/30/19 11:25	04/30/19
L1917771-02	MW-2	WATER	641 WEST AVE, LOCKPORT, NY	04/30/19 12:50	04/30/19
L1917771-03	MW-3	WATER	641 WEST AVE, LOCKPORT, NY	04/30/19 11:00	04/30/19
L1917771-04	EQUIPMENT BLANK	WATER	641 WEST AVE, LOCKPORT, NY	04/30/19 14:20	04/30/19
L1917771-05	TRIP BLANK	WATER	641 WEST AVE, LOCKPORT, NY	04/30/19 00:00	04/30/19

Project Name: 641 WEST AVE (NIAGARA COUNTY) Lab Number: L1917771

Project Number: Not Specified Report Date: 05/10/19

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.

Project Name: 641 WEST AVE (NIAGARA COUNTY)

Lab Number: L1917771

Project Number: Not Specified

Report Date: 05/10/19

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Sample Receipt

L1917771-05: A sample identified as "TRIP BLANK" was received but not listed on the Chain of Custody. This sample was not analyzed.

Volatile Organics

L1917771-01 and -03: The sample has elevated detection limits due to the dilution required by the sample matrix (oily).

Semivolatile Organics

L1917771-01, -02, and -03: The sample has elevated detection limits due to the dilution required by the sample matrix.

L1917771-01: The surrogate recoveries are below the acceptance criteria for 2-fluorophenol (0%), phenol-d6 (0%), nitrobenzene-d5 (0%), 2-fluorobiphenyl (0%), 2,4,6-tribromophenol (0%) and 4-terphenyl-d14 (0%) due to the dilution required to quantitate the sample. Re-extraction was not required; therefore, the results of the original analysis are reported.

Semivolatile Organics by SIM

L1917771-01, -02 and -03: The sample has elevated detection limits due to the dilution required by the sample matrix.

L1917771-01: The surrogate recoveries are below the acceptance criteria for 2-fluorophenol (0%), phenol-d6 (0%), nitrobenzene-d5 (0%), 2-fluorobiphenyl (0%), 2,4,6-tribromophenol (0%) and 4-terphenyl-d14 (0%) due to the dilution required to quantitate the sample. Re-extraction was not required; therefore, the results of the original analysis are reported.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 05/10/19

Melyso Copp's Melissa Cripps

ALPHA

ORGANICS

VOLATILES

L1917771

05/10/19

Project Name: 641 WEST AVE (NIAGARA COUNTY)

Project Number: Not Specified

SAMPLE RESULTS

Lab Number:

Report Date:

Lab ID: L1917771-01 D Date Collected: 04/30/19 11:25

Client ID: Date Received: 04/30/19 MW-1 Field Prep: Sample Location: 641 WEST AVE, LOCKPORT, NY Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 05/07/19 01:46

Analyst: PD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westl	oorough Lab						
Methylene chloride	ND		ug/l	25	7.0	10	
1,1-Dichloroethane	ND		ug/l	25	7.0	10	
Chloroform	ND		ug/l	25	7.0	10	
Carbon tetrachloride	ND		ug/l	5.0	1.3	10	
1,2-Dichloropropane	ND		ug/l	10	1.4	10	
Dibromochloromethane	ND		ug/l	5.0	1.5	10	
1,1,2-Trichloroethane	ND		ug/l	15	5.0	10	
Tetrachloroethene	ND		ug/l	5.0	1.8	10	
Chlorobenzene	ND		ug/l	25	7.0	10	
Trichlorofluoromethane	ND		ug/l	25	7.0	10	
1,2-Dichloroethane	ND		ug/l	5.0	1.3	10	
1,1,1-Trichloroethane	ND		ug/l	25	7.0	10	
Bromodichloromethane	ND		ug/l	5.0	1.9	10	
trans-1,3-Dichloropropene	ND		ug/l	5.0	1.6	10	
cis-1,3-Dichloropropene	ND		ug/l	5.0	1.4	10	
Bromoform	ND		ug/l	20	6.5	10	
1,1,2,2-Tetrachloroethane	ND		ug/l	5.0	1.7	10	
Benzene	ND		ug/l	5.0	1.6	10	
Toluene	ND		ug/l	25	7.0	10	
Ethylbenzene	ND		ug/l	25	7.0	10	
Chloromethane	ND		ug/l	25	7.0	10	
Bromomethane	ND		ug/l	25	7.0	10	
Vinyl chloride	ND		ug/l	10	0.71	10	
Chloroethane	ND		ug/l	25	7.0	10	
1,1-Dichloroethene	ND		ug/l	5.0	1.7	10	
trans-1,2-Dichloroethene	ND		ug/l	25	7.0	10	
Trichloroethene	ND		ug/l	5.0	1.8	10	
1,2-Dichlorobenzene	ND		ug/l	25	7.0	10	

05/10/19

Project Name: 641 WEST AVE (NIAGARA COUNTY) Lab Number: L1917771

Project Number: Not Specified

SAMPLE RESULTS

Date Collected: 04/30/19 11:25

Report Date:

Lab ID: D L1917771-01

Date Received: Client ID: 04/30/19 MW-1 Sample Location: 641 WEST AVE, LOCKPORT, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS	- Westborough Lab					
1,3-Dichlorobenzene	ND		ug/l	25	7.0	10
1,4-Dichlorobenzene	ND		ug/l	25	7.0	10
Methyl tert butyl ether	ND		ug/l	25	7.0	10
p/m-Xylene	ND		ug/l	25	7.0	10
o-Xylene	ND		ug/l	25	7.0	10
cis-1,2-Dichloroethene	ND		ug/l	25	7.0	10
Styrene	ND		ug/l	25	7.0	10
Dichlorodifluoromethane	ND		ug/l	50	10.	10
Acetone	ND		ug/l	50	15.	10
Carbon disulfide	ND		ug/l	50	10.	10
2-Butanone	ND		ug/l	50	19.	10
4-Methyl-2-pentanone	ND		ug/l	50	10.	10
2-Hexanone	ND		ug/l	50	10.	10
1,2-Dibromoethane	ND		ug/l	20	6.5	10
n-Butylbenzene	ND		ug/l	25	7.0	10
sec-Butylbenzene	12	J	ug/l	25	7.0	10
tert-Butylbenzene	ND		ug/l	25	7.0	10
1,2-Dibromo-3-chloropropane	ND		ug/l	25	7.0	10
Isopropylbenzene	ND		ug/l	25	7.0	10
p-Isopropyltoluene	ND		ug/l	25	7.0	10
Naphthalene	ND		ug/l	25	7.0	10
n-Propylbenzene	ND		ug/l	25	7.0	10
1,2,4-Trichlorobenzene	ND		ug/l	25	7.0	10
1,3,5-Trimethylbenzene	ND		ug/l	25	7.0	10
1,2,4-Trimethylbenzene	ND		ug/l	25	7.0	10
Methyl Acetate	ND		ug/l	20	2.3	10
Cyclohexane	ND		ug/l	100	2.7	10
Freon-113	ND		ug/l	25	7.0	10
Methyl cyclohexane	ND		ug/l	100	4.0	10

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	103	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	105	70-130	
Dibromofluoromethane	92	70-130	

L1917771

05/10/19

04/30/19

Project Name: 641 WEST AVE (NIAGARA COUNTY)

Project Number: Not Specified

SAMPLE RESULTS

Lab Number:

Report Date:

Date Received:

Lab ID: D Date Collected: 04/30/19 12:50 L1917771-02

Client ID: MW-2

Field Prep: Sample Location: 641 WEST AVE, LOCKPORT, NY Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 05/07/19 02:14

Analyst: PD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	jh Lab					
Methylene chloride	ND		ug/l	25	7.0	10
1,1-Dichloroethane	ND		ug/l	25	7.0	10
Chloroform	ND		ug/l	25	7.0	10
Carbon tetrachloride	ND		ug/l	5.0	1.3	10
1,2-Dichloropropane	ND		ug/l	10	1.4	10
Dibromochloromethane	ND		ug/l	5.0	1.5	10
1,1,2-Trichloroethane	ND		ug/l	15	5.0	10
Tetrachloroethene	ND		ug/l	5.0	1.8	10
Chlorobenzene	ND		ug/l	25	7.0	10
Trichlorofluoromethane	ND		ug/l	25	7.0	10
1,2-Dichloroethane	ND		ug/l	5.0	1.3	10
1,1,1-Trichloroethane	ND		ug/l	25	7.0	10
Bromodichloromethane	ND		ug/l	5.0	1.9	10
trans-1,3-Dichloropropene	ND		ug/l	5.0	1.6	10
cis-1,3-Dichloropropene	ND		ug/l	5.0	1.4	10
Bromoform	ND		ug/l	20	6.5	10
1,1,2,2-Tetrachloroethane	ND		ug/l	5.0	1.7	10
Benzene	1100		ug/l	5.0	1.6	10
Toluene	220		ug/l	25	7.0	10
Ethylbenzene	680		ug/l	25	7.0	10
Chloromethane	ND		ug/l	25	7.0	10
Bromomethane	ND		ug/l	25	7.0	10
Vinyl chloride	ND		ug/l	10	0.71	10
Chloroethane	ND		ug/l	25	7.0	10
1,1-Dichloroethene	ND		ug/l	5.0	1.7	10
trans-1,2-Dichloroethene	ND		ug/l	25	7.0	10
Trichloroethene	ND		ug/l	5.0	1.8	10
1,2-Dichlorobenzene	ND		ug/l	25	7.0	10

05/10/19

Project Name: 641 WEST AVE (NIAGARA COUNTY) Lab Number: L1917771

Project Number: Not Specified

SAMPLE RESULTS

Date Collected: 04/30/19 12:50

Report Date:

Lab ID: D L1917771-02 Client ID:

MW-2

Date Received: 04/30/19 641 WEST AVE, LOCKPORT, NY Field Prep: Not Specified

Sample Depth:

Sample Location:

1,3-Dichlorobenzene ND	meter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
1,4-Dichlorobenzene ND ug/l 25 7.0 10 Methyl tert butyl ether ND ug/l 25 7.0 10 p/m-Xylene 2700 ug/l 25 7.0 10 o-Xylene 140 ug/l 25 7.0 10 cis-1,2-Dichloroethene ND ug/l 25 7.0 10 Styrene ND ug/l 25 7.0 10 Dichlorodifluoromethane ND ug/l 50 10 10 Acetone ND ug/l 50 15 10 Carbon disulfide ND ug/l 50 10 10 2-Butanone ND ug/l 50 10 10 4-Methyl-2-pentanone ND ug/l 50 10 10 2-Hexanone ND ug/l 50 10 10 1,2-Dibromoethane ND ug/l 25 7.0 10 1,2-Dibromoeth	atile Organics by GC/MS -	estborough Lab						
1,4-Dichlorobenzene ND ug/l 25 7.0 10 Methyl tert butyl ether ND ug/l 25 7.0 10 p/m-Xylene 2700 ug/l 25 7.0 10 o-Xylene 140 ug/l 25 7.0 10 cis-1,2-Dichloroethene ND ug/l 25 7.0 10 Styrene ND ug/l 25 7.0 10 Styrene ND ug/l 50 10. 10 Acetone ND ug/l 50 10. 10 Acetone ND ug/l 50 15. 10 Carbon disulfide ND ug/l 50 10. 10 2-Butanone ND ug/l 50 10. 10 4-Methyl-2-pentanone ND ug/l 50 10. 10 2-Hexanone ND ug/l 50 10. 10 1-2-Dibromoethane <td< td=""><td>Dichlorobenzene</td><td>ND</td><td></td><td>ug/l</td><td>25</td><td>7.0</td><td>10</td><td></td></td<>	Dichlorobenzene	ND		ug/l	25	7.0	10	
Methyl tert butyl ether ND ug/l 25 7.0 10 p/m-Xylene 2700 ug/l 25 7.0 10 o-Xylene 140 ug/l 25 7.0 10 cis-1,2-Dichloroethene ND ug/l 25 7.0 10 Styrene ND ug/l 25 7.0 10 Dichlorodifluoromethane ND ug/l 50 10. 10 Acetone ND ug/l 50 10. 10 Carbon disulfide ND ug/l 50 10. 10 2-Butanone ND ug/l 50 10. 10 4-Methyl-2-pentanone ND ug/l 50 10. 10 4-Methyl-2-pentanone ND ug/l 50 10. 10 2-Hexanone ND ug/l 50 10. 10 1,2-Dibromoethane ND ug/l 25 7.0 10 sec-But	Dichlorobenzene	ND			25	7.0	10	
p/m-Xylene 2700 ug/l 25 7.0 10 o-Xylene 140 ug/l 25 7.0 10 cis-1,2-Dichloroethene ND ug/l 25 7.0 10 Styrene ND ug/l 25 7.0 10 Dichlorodifluoromethane ND ug/l 50 10. 10 Acetone ND ug/l 50 15. 10 Carbon disulfide ND ug/l 50 10. 10 2-Butanone ND ug/l 50 10. 10 4-Methyl-2-pentanone ND ug/l 50 10. 10 4-Methyl-2-pentanone ND ug/l 50 10. 10 2-Hexanone ND ug/l 50 10. 10 1,2-Dibromoethane ND ug/l 25 7.0 10 n-Butylbenzene 8.9 J ug/l 25 7.0 10		ND					10	
o-Xylene 140 ug/l 25 7.0 10 cis-1,2-Dichloroethene ND ug/l 25 7.0 10 Styrene ND ug/l 25 7.0 10 Dichlorodifluoromethane ND ug/l 50 10. 10 Acetone ND ug/l 50 15. 10 Carbon disulfide ND ug/l 50 10. 10 2-Butanone ND ug/l 50 19. 10 4-Methyl-2-pentanone ND ug/l 50 10. 10 2-Hexanone ND ug/l 50 10. 10 2-Hexanone ND ug/l 20 6.5 10 1,2-Dibromoethane ND ug/l 25 7.0 10 sec-Butylbenzene 8.9 J ug/l 25 7.0 10 tert-Butylbenzene ND ug/l 25 7.0 10 <td< td=""><td>· · · · ·</td><td>2700</td><td></td><td></td><td>25</td><td>7.0</td><td>10</td><td></td></td<>	· · · · ·	2700			25	7.0	10	
cis-1,2-Dichloroethene ND ug/l 25 7.0 10 Styrene ND ug/l 25 7.0 10 Dichlorodifluoromethane ND ug/l 50 10. 10 Acetone ND ug/l 50 15. 10 Carbon disulfide ND ug/l 50 10. 10 2-Butanone ND ug/l 50 19. 10 4-Methyl-2-pentanone ND ug/l 50 10. 10 2-Hexanone ND ug/l 50 10. 10 2-Hexanone ND ug/l 50 10. 10 2-Hexanone ND ug/l 20 6.5 10 1,2-Dibromoethane ND ug/l 25 7.0 10 sec-Butylbenzene 8.9 J ug/l 25 7.0 10 tert-Butylbenzene ND ug/l 25 7.0 10 <t< td=""><td>·</td><td>140</td><td></td><td></td><td>25</td><td>7.0</td><td>10</td><td></td></t<>	·	140			25	7.0	10	
Styrene ND		ND			25	7.0	10	
Dichlorodifluoromethane ND	•	ND			25	7.0	10	
Acetone ND ug/l 50 15. 10 Carbon disulfide ND ug/l 50 10. 10 2-Butanone ND ug/l 50 19. 10 4-Methyl-2-pentanone ND ug/l 50 10. 10 2-Hexanone ND ug/l 50 10. 10 1,2-Dibromoethane ND ug/l 20 6.5 10 n-Butylbenzene 13 J ug/l 25 7.0 10 sec-Butylbenzene 8.9 J ug/l 25 7.0 10 tert-Butylbenzene ND ug/l 25 7.0 10 1,2-Dibromo-3-chloropropane ND ug/l 25 7.0 10 1,2-Dibromo-3-chloropropane ND ug/l 25 7.0 10 Isopropylbenzene 89 ug/l 25 7.0 10 ND ug/l 25 7.0 10 <t< td=""><td></td><td>ND</td><td></td><td></td><td>50</td><td>10.</td><td>10</td><td></td></t<>		ND			50	10.	10	
Carbon disulfide ND ug/l 50 10. 10 2-Butanone ND ug/l 50 19. 10 4-Methyl-2-pentanone ND ug/l 50 10. 10 2-Hexanone ND ug/l 50 10. 10 1,2-Dibromoethane ND ug/l 20 6.5 10 n-Butylbenzene 13 J ug/l 25 7.0 10 sec-Butylbenzene 8.9 J ug/l 25 7.0 10 tert-Butylbenzene ND ug/l 25 7.0 10 1,2-Dibromo-3-chloropropane ND ug/l 25 7.0 10 Isopropylbenzene 89 ug/l 25 7.0 10 P-Isopropyltoluene ND ug/l 25 7.0 10 Naphthalene 120 ug/l 25 7.0 10 n-Propylbenzene 180 ug/l 25 7.0	one	ND			50	15.	10	
2-Butanone ND ug/l 50 19. 10 4-Methyl-2-pentanone ND ug/l 50 10. 10 2-Hexanone ND ug/l 50 10. 10 1,2-Dibromoethane ND ug/l 20 6.5 10 n-Butylbenzene 13 J ug/l 25 7.0 10 sec-Butylbenzene 8.9 J ug/l 25 7.0 10 tert-Butylbenzene ND ug/l 25 7.0 10 1,2-Dibromo-3-chloropropane ND ug/l 25 7.0 10 Isopropylbenzene 89 ug/l 25 7.0 10 P-Isopropyltoluene ND ug/l 25 7.0 10 Naphthalene 120 ug/l 25 7.0 10 n-Propylbenzene 180 ug/l 25 7.0 10 1,2,4-Trichlorobenzene ND ug/l 25 7.0	on disulfide	ND			50	10.	10	
4-Methyl-2-pentanone ND ug/l 50 10. 10 2-Hexanone ND ug/l 50 10. 10 1,2-Dibromoethane ND ug/l 20 6.5 10 n-Butylbenzene 13 J ug/l 25 7.0 10 sec-Butylbenzene 8.9 J ug/l 25 7.0 10 tert-Butylbenzene ND ug/l 25 7.0 10 1,2-Dibromo-3-chloropropane ND ug/l 25 7.0 10 Isopropylbenzene 89 ug/l 25 7.0 10 Isopropyltoluene ND ug/l 25 7.0 10 Naphthalene 120 ug/l 25 7.0 10 n-Propylbenzene 180 ug/l 25 7.0 10 1,2,4-Trichlorobenzene ND ug/l 25 7.0 10								
2-Hexanone ND ug/l 50 10. 10 1,2-Dibromoethane ND ug/l 20 6.5 10 n-Butylbenzene 13 J ug/l 25 7.0 10 sec-Butylbenzene 8.9 J ug/l 25 7.0 10 tert-Butylbenzene ND ug/l 25 7.0 10 1,2-Dibromo-3-chloropropane ND ug/l 25 7.0 10 lsopropylbenzene 89 ug/l 25 7.0 10 lsopropylbenzene 89 ug/l 25 7.0 10 ND ug/l 25 7.0 10 n-Propylbenzene ND ug/l 25 7.0 10 n-Propylbenzene ND ug/l 25 7.0 10 Naphthalene 120 ug/l 25 7.0 10 n-Propylbenzene 180 ug/l 25 7.0 10 1,2,4-Trichlorobenzene ND ug/l 25 7.0 10	thyl-2-pentanone	ND			50	10.	10	
1,2-Dibromoethane ND ug/l 20 6.5 10 n-Butylbenzene 13 J ug/l 25 7.0 10 sec-Butylbenzene 8.9 J ug/l 25 7.0 10 tert-Butylbenzene ND ug/l 25 7.0 10 1,2-Dibromo-3-chloropropane ND ug/l 25 7.0 10 Isopropylbenzene 89 ug/l 25 7.0 10 p-Isopropyltoluene ND ug/l 25 7.0 10 Naphthalene 120 ug/l 25 7.0 10 n-Propylbenzene 180 ug/l 25 7.0 10 1,2,4-Trichlorobenzene ND ug/l 25 7.0 10		ND			50	10.	10	
n-Butylbenzene 13 J ug/l 25 7.0 10 sec-Butylbenzene 8.9 J ug/l 25 7.0 10 tert-Butylbenzene ND ug/l 25 7.0 10 1,2-Dibromo-3-chloropropane ND ug/l 25 7.0 10 Isopropylbenzene 89 ug/l 25 7.0 10 P-Isopropyltoluene ND ug/l 25 7.0 10 Naphthalene 120 ug/l 25 7.0 10 n-Propylbenzene 180 ug/l 25 7.0 10 1,2,4-Trichlorobenzene ND ug/l 25 7.0 10	Dibromoethane	ND			20	6.5	10	
sec-Butylbenzene 8.9 J ug/l 25 7.0 10 tert-Butylbenzene ND ug/l 25 7.0 10 1,2-Dibromo-3-chloropropane ND ug/l 25 7.0 10 Isopropylbenzene 89 ug/l 25 7.0 10 p-Isopropyltoluene ND ug/l 25 7.0 10 Naphthalene 120 ug/l 25 7.0 10 n-Propylbenzene 180 ug/l 25 7.0 10 1,2,4-Trichlorobenzene ND ug/l 25 7.0 10	tylbenzene	13	J		25	7.0	10	
tert-Butylbenzene ND ug/l 25 7.0 10 1,2-Dibromo-3-chloropropane ND ug/l 25 7.0 10 Isopropylbenzene 89 ug/l 25 7.0 10 p-Isopropyltoluene ND ug/l 25 7.0 10 Naphthalene 120 ug/l 25 7.0 10 n-Propylbenzene 180 ug/l 25 7.0 10 1,2,4-Trichlorobenzene ND ug/l 25 7.0 10	Butylbenzene	8.9	J		25	7.0	10	
1,2-Dibromo-3-chloropropane ND ug/l 25 7.0 10 Isopropylbenzene 89 ug/l 25 7.0 10 p-Isopropyltoluene ND ug/l 25 7.0 10 Naphthalene 120 ug/l 25 7.0 10 n-Propylbenzene 180 ug/l 25 7.0 10 1,2,4-Trichlorobenzene ND ug/l 25 7.0 10	Butylbenzene	ND			25	7.0	10	
Isopropylbenzene 89 ug/l 25 7.0 10 p-Isopropyltoluene ND ug/l 25 7.0 10 Naphthalene 120 ug/l 25 7.0 10 n-Propylbenzene 180 ug/l 25 7.0 10 1,2,4-Trichlorobenzene ND ug/l 25 7.0 10		ND			25	7.0	10	
p-Isopropyltoluene ND ug/I 25 7.0 10 Naphthalene 120 ug/I 25 7.0 10 n-Propylbenzene 180 ug/I 25 7.0 10 1,2,4-Trichlorobenzene ND ug/I 25 7.0 10	ropylbenzene	89			25	7.0	10	
Naphthalene 120 ug/l 25 7.0 10 n-Propylbenzene 180 ug/l 25 7.0 10 1,2,4-Trichlorobenzene ND ug/l 25 7.0 10		ND			25	7.0	10	
n-Propylbenzene 180 ug/l 25 7.0 10 1,2,4-Trichlorobenzene ND ug/l 25 7.0 10	nthalene	120			25	7.0	10	
	pylbenzene	180			25	7.0	10	
1,3,5-Trimethylbenzene 240 ug/l 25 7.0 10	Trichlorobenzene	ND		ug/l	25	7.0	10	
	i-Trimethylbenzene	240		ug/l	25	7.0	10	
1,2,4-Trimethylbenzene 910 ug/l 25 7.0 10	-Trimethylbenzene	910			25	7.0	10	
Methyl Acetate ND ug/l 20 2.3 10	yl Acetate	ND			20	2.3	10	
Cyclohexane 480 ug/l 100 2.7 10	phexane	480			100	2.7	10	
Freon-113 ND ug/l 25 7.0 10	n-113	ND			25	7.0	10	
Methyl cyclohexane 240 ug/l 100 4.0 10	yl cyclohexane	240		ug/l	100	4.0	10	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	110	70-130	
Toluene-d8	107	70-130	
4-Bromofluorobenzene	103	70-130	
Dibromofluoromethane	84	70-130	

Project Name: 641 WEST AVE (NIAGARA COUNTY)

Not Specified

Lab Number: **Report Date:**

L1917771

Project Number:

SAMPLE RESULTS

05/10/19

Lab ID: D L1917771-03

Date Collected:

04/30/19 11:00

Client ID:

MW-3

Date Received: Field Prep:

04/30/19

Sample Location:

641 WEST AVE, LOCKPORT, NY

Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 05/07/19 02:42

Analyst: PD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbor	ough Lab					
Methylene chloride	ND		ug/l	25	7.0	10
1,1-Dichloroethane	ND		ug/l	25	7.0	10
Chloroform	ND		ug/l	25	7.0	10
Carbon tetrachloride	ND		ug/l	5.0	1.3	10
1,2-Dichloropropane	ND		ug/l	10	1.4	10
Dibromochloromethane	ND		ug/l	5.0	1.5	10
1,1,2-Trichloroethane	ND		ug/l	15	5.0	10
Tetrachloroethene	ND		ug/l	5.0	1.8	10
Chlorobenzene	ND		ug/l	25	7.0	10
Trichlorofluoromethane	ND		ug/l	25	7.0	10
1,2-Dichloroethane	ND		ug/l	5.0	1.3	10
1,1,1-Trichloroethane	ND		ug/l	25	7.0	10
Bromodichloromethane	ND		ug/l	5.0	1.9	10
trans-1,3-Dichloropropene	ND		ug/l	5.0	1.6	10
cis-1,3-Dichloropropene	ND		ug/l	5.0	1.4	10
Bromoform	ND		ug/l	20	6.5	10
1,1,2,2-Tetrachloroethane	ND		ug/l	5.0	1.7	10
Benzene	1.7	J	ug/l	5.0	1.6	10
Toluene	ND		ug/l	25	7.0	10
Ethylbenzene	ND		ug/l	25	7.0	10
Chloromethane	ND		ug/l	25	7.0	10
Bromomethane	ND		ug/l	25	7.0	10
Vinyl chloride	ND		ug/l	10	0.71	10
Chloroethane	ND		ug/l	25	7.0	10
1,1-Dichloroethene	ND		ug/l	5.0	1.7	10
trans-1,2-Dichloroethene	ND		ug/l	25	7.0	10
Trichloroethene	ND		ug/l	5.0	1.8	10
1,2-Dichlorobenzene	ND		ug/l	25	7.0	10

05/10/19

Dilution Factor

Project Name: 641 WEST AVE (NIAGARA COUNTY) Lab Number: L1917771

Project Number: Not Specified

SAMPLE RESULTS

Qualifier

Units

Date Collected: 04/30/19 11:00

MDL

Report Date:

RL

Lab ID: D L1917771-03

Date Received: Client ID: 04/30/19 MW-3 Sample Location: 641 WEST AVE, LOCKPORT, NY Field Prep: Not Specified

Result

Sample Depth:

Parameter

rarameter	Nesuit	Qualifier	Ullita	IXL.	IVIDE	Dilution i actor	
Volatile Organics by GC/MS - V	Vestborough Lab						
1,3-Dichlorobenzene	ND		ug/l	25	7.0	10	
1,4-Dichlorobenzene	ND		ug/l	25	7.0	10	
Methyl tert butyl ether	ND		ug/l	25	7.0	10	
p/m-Xylene	ND		ug/l	25	7.0	10	
o-Xylene	ND		ug/l	25	7.0	10	
cis-1,2-Dichloroethene	ND		ug/l	25	7.0	10	
Styrene	ND		ug/l	25	7.0	10	
Dichlorodifluoromethane	ND		ug/l	50	10.	10	
Acetone	64		ug/l	50	15.	10	
Carbon disulfide	ND		ug/l	50	10.	10	
2-Butanone	ND		ug/l	50	19.	10	
4-Methyl-2-pentanone	ND		ug/l	50	10.	10	
2-Hexanone	ND		ug/l	50	10.	10	
1,2-Dibromoethane	ND		ug/l	20	6.5	10	
n-Butylbenzene	43		ug/l	25	7.0	10	
sec-Butylbenzene	37		ug/l	25	7.0	10	
tert-Butylbenzene	ND		ug/l	25	7.0	10	
1,2-Dibromo-3-chloropropane	ND		ug/l	25	7.0	10	
Isopropylbenzene	31		ug/l	25	7.0	10	
p-Isopropyltoluene	ND		ug/l	25	7.0	10	
Naphthalene	15	J	ug/l	25	7.0	10	
n-Propylbenzene	45		ug/l	25	7.0	10	
1,2,4-Trichlorobenzene	ND		ug/l	25	7.0	10	
1,3,5-Trimethylbenzene	ND		ug/l	25	7.0	10	
1,2,4-Trimethylbenzene	ND		ug/l	25	7.0	10	
Methyl Acetate	ND		ug/l	20	2.3	10	
Cyclohexane	5.6	J	ug/l	100	2.7	10	
Freon-113	ND		ug/l	25	7.0	10	
Methyl cyclohexane	16	J	ug/l	100	4.0	10	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	102	70-130	
Toluene-d8	104	70-130	
4-Bromofluorobenzene	106	70-130	
Dibromofluoromethane	93	70-130	

L1917771

05/10/19

Project Name: 641 WEST AVE (NIAGARA COUNTY)

Not Specified

SAMPLE RESULTS

Date Collected: 04/30/19 14:20

Lab Number:

Report Date:

Lab ID: L1917771-04

Client ID: EQUIPMENT BLANK

Sample Location: 641 WEST AVE, LOCKPORT, NY

Date Received: 04/30/19
Field Prep: Not Specified

Sample Depth:

Project Number:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 05/06/19 21:33

Analyst: PD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbo	orough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

05/10/19

Project Name: 641 WEST AVE (NIAGARA COUNTY) Lab Number: L1917771

Project Number: Not Specified

SAMPLE RESULTS

Date Collected: 04/30/19 14:20

Report Date:

Lab ID: L1917771-04

Date Received: Client ID: **EQUIPMENT BLANK** 04/30/19 Sample Location: 641 WEST AVE, LOCKPORT, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS	- Westborough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	3.3	J	ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	104	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	104	70-130	
Dibromofluoromethane	93	70-130	

Project Name: 641 WEST AVE (NIAGARA COUNTY) Lab Number: L1917771

Project Number: Not Specified Report Date: 05/10/19

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 05/06/19 20:08

Analyst: PD

arameter	Result	Qualifier Units	RL	MDL
platile Organics by GC/MS	- Westborough La	b for sample(s): 0	1-04 Batch:	WG1234459-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70

Project Name: 641 WEST AVE (NIAGARA COUNTY) Lab Number: L1917771

Project Number: Not Specified Report Date: 05/10/19

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 05/06/19 20:08

Analyst: PD

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS	- Westborough Lal	o for sample(s): 0	1-04 Batch:	WG1234459-5
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
1,2-Dibromoethane	ND	ug/l	2.0	0.65
n-Butylbenzene	ND	ug/l	2.5	0.70
sec-Butylbenzene	ND	ug/l	2.5	0.70
tert-Butylbenzene	ND	ug/l	2.5	0.70
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
p-Isopropyltoluene	ND	ug/l	2.5	0.70
Naphthalene	ND	ug/l	2.5	0.70
n-Propylbenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70
Methyl Acetate	ND	ug/l	2.0	0.23
Cyclohexane	ND	ug/l	10	0.27
Freon-113	ND	ug/l	2.5	0.70
Methyl cyclohexane	ND	ug/l	10	0.40

Project Name: 641 WEST AVE (NIAGARA COUNTY) Lab Number: L1917771

Project Number: Not Specified Report Date: 05/10/19

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 05/06/19 20:08

Analyst: PD

ParameterResultQualifierUnitsRLMDLVolatile Organics by GC/MS - Westborough Lab for sample(s):01-04Batch:WG1234459-5

		Acceptance
Surrogate	%Recovery Qualifi	er Criteria
1,2-Dichloroethane-d4	104	70-130
Toluene-d8	102	70-130
4-Bromofluorobenzene	106	70-130
Dibromofluoromethane	93	70-130

Project Name: 641 WEST AVE (NIAGARA COUNTY)

Project Number: Not Specified

Lab Number: L1917771

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
olatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-04 Batch: \	WG1234459-3	WG1234459-4		
Methylene chloride	90		90		70-130	0	20
1,1-Dichloroethane	97		98		70-130	1	20
Chloroform	92		88		70-130	4	20
Carbon tetrachloride	91		95		63-132	4	20
1,2-Dichloropropane	97		100		70-130	3	20
Dibromochloromethane	88		89		63-130	1	20
1,1,2-Trichloroethane	99		100		70-130	1	20
Tetrachloroethene	93		94		70-130	1	20
Chlorobenzene	96		97		75-130	1	20
Trichlorofluoromethane	94		95		62-150	1	20
1,2-Dichloroethane	95		96		70-130	1	20
1,1,1-Trichloroethane	91		93		67-130	2	20
Bromodichloromethane	89		91		67-130	2	20
trans-1,3-Dichloropropene	95		96		70-130	1	20
cis-1,3-Dichloropropene	91		92		70-130	1	20
Bromoform	84		87		54-136	4	20
1,1,2,2-Tetrachloroethane	100		110		67-130	10	20
Benzene	93		95		70-130	2	20
Toluene	97		97		70-130	0	20
Ethylbenzene	100		100		70-130	0	20
Chloromethane	82		84		64-130	2	20
Bromomethane	35	Q	42		39-139	18	20
Vinyl chloride	95		96		55-140	1	20

Project Name: 641 WEST AVE (NIAGARA COUNTY)

Project Number: Not Specified

Lab Number: L1917771

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01-04 Batch:	WG1234459-3	WG1234459-4		
Chloroethane	100		100		55-138	0	20
1,1-Dichloroethene	91		93		61-145	2	20
trans-1,2-Dichloroethene	90		94		70-130	4	20
Trichloroethene	92		94		70-130	2	20
1,2-Dichlorobenzene	99		100		70-130	1	20
1,3-Dichlorobenzene	100		100		70-130	0	20
1,4-Dichlorobenzene	100		100		70-130	0	20
Methyl tert butyl ether	92		92		63-130	0	20
p/m-Xylene	100		100		70-130	0	20
o-Xylene	95		95		70-130	0	20
cis-1,2-Dichloroethene	89		92		70-130	3	20
Styrene	90		95		70-130	5	20
Dichlorodifluoromethane	89		90		36-147	1	20
Acetone	87		86		58-148	1	20
Carbon disulfide	93		95		51-130	2	20
2-Butanone	99		93		63-138	6	20
4-Methyl-2-pentanone	95		98		59-130	3	20
2-Hexanone	110		110		57-130	0	20
1,2-Dibromoethane	95		94		70-130	1	20
n-Butylbenzene	110		110		53-136	0	20
sec-Butylbenzene	110		110		70-130	0	20
tert-Butylbenzene	110		110		70-130	0	20
1,2-Dibromo-3-chloropropane	80		84		41-144	5	20

Project Name: 641 WEST AVE (NIAGARA COUNTY)

Not Specified

Project Number:

Lab Number: L1917771

Parameter	LCS %Recovery	Qual		LCSD Recovery		%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by GC/MS - Westbo	orough Lab Associated	sample(s):	01-04	Batch:	WG1234459-3	WG1234459-4			
Isopropylbenzene	110			110		70-130	0		20
p-Isopropyltoluene	110			110		70-130	0		20
Naphthalene	89			90		70-130	1		20
n-Propylbenzene	120			120		69-130	0		20
1,2,4-Trichlorobenzene	91			95		70-130	4		20
1,3,5-Trimethylbenzene	110			110		64-130	0		20
1,2,4-Trimethylbenzene	110			110		70-130	0		20
Methyl Acetate	98			98		70-130	0		20
Cyclohexane	100			110		70-130	10		20
Freon-113	97			99		70-130	2		20
Methyl cyclohexane	100			100		70-130	0		20

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	103	103	70-130
Toluene-d8	103	102	70-130
4-Bromofluorobenzene	104	103	70-130
Dibromofluoromethane	94	94	70-130

SEMIVOLATILES

Project Name: 641 WEST AVE (NIAGARA COUNTY) Lab Number: L1917771

Project Number: Not Specified Report Date: 05/10/19

SAMPLE RESULTS

Lab ID: L1917771-01 D Date Collected: 04/30/19 11:25

Client ID: MW-1 Date Received: 04/30/19

Sample Location: 641 WEST AVE, LOCKPORT, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C
Analytical Method: 1,8270D Extraction Date: 05/04/19 01:00

Analytical Date: 05/08/19 11:42

Analyst: SZ

Bis(2-chloroisopropyl)ether ND ug/l 50 13. 25 Bis(2-chloroethoxy)methane ND ug/l 120 12. 25 Hexachlorocyclopentadiene ND ug/l 500 17. 25 Isophorone ND ug/l 120 30. 25 Nitrobenzene ND ug/l 50 19. 25 NDPA/DPA ND ug/l 50 10. 25 n-Nitrosodi-n-propylamine ND ug/l 120 16. 25 Bis(2-ethylhexyl)phthalate ND ug/l 75 38. 25 Butyl benzyl phthalate ND ug/l 120 29. 25	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
3,3-Dichlorobenzidine ND ug/l 120 40. 25 2,4-Dinitrotoluene ND ug/l 120 29. 25 2,5-Dinitrotoluene ND ug/l 120 23. 25 4-Chiorophenyl phenyl ether ND ug/l 50 12. 25 4-Bromophenyl phenyl ether ND ug/l 50 13. 25 4-Bromophenyl phenyl ether ND ug/l 50 13. 25 4-Bromophenyl phenyl ether ND ug/l 50 13. 25 4-Bis(2-chloroethoxy)methane ND ug/l 50 13. 25 4-Exachlorocyclopentadiene ND ug/l 500 17. 25 4-Exachlorocyclopentadiene ND ug/l 500 17. 25 4-Exachlorocyclopentadiene ND ug/l 500 17. 25 4-Exachlorocyclopentadiene ND ug/l 50 19. 25 4-Exachlorocyclopentadiene ND ug/l 50 10. 25 4-Exachlorocyclopentadiene ND ug/l 120 16. 25 4-Exachlorocyclopentadiene ND ug/l 120 29. 25 4-Exachlorocyclopentadiene ND ug/l 120 29. 25 4-Exachlorocyclopentadiene ND ug/l 120 32. 25 4-Exachlorocyclopentadiene ND ug/l 120 27. 25 4-Exachlorocyclopentadiene ND ug/l 120 27. 25 4-Exachlorocyclopentadiene ND ug/l 120 27. 25 4-Exachlorocyclopentadiene ND ug/l 120 20. 25 4-Exachlorocyclopentadiene ND ug/l 120	Semivolatile Organics by GC/MS - V	Westborough Lab					
2,4-Dinitrotoluene ND ug/l 120 29. 25 2,6-Dinitrotoluene ND ug/l 120 23. 25 4-Chlorophenyl phenyl ether ND ug/l 50 12. 25 4-Bromophenyl phenyl ether ND ug/l 50 9.4 25 Bis(2-chlorosporyl)ether ND ug/l 50 9.4 25 Bis(2-chlorosporyl)ether ND ug/l 50 13. 25 Bis(2-chlorosporyl)ether ND ug/l 50 17. 25 Bis(2-chlorosporyl)ether ND ug/l 120 12. 25 Hexachlorocyclopentadiene ND ug/l 120 17. 25 Isophorore ND ug/l 120 10. 25 Isophorore ND ug/l 120 30. 25 ND ug/l 120 30. 25 NDA/DPA ND ug/l 120 16. 25 <td>Bis(2-chloroethyl)ether</td> <td>ND</td> <td></td> <td>ug/l</td> <td>50</td> <td>13.</td> <td>25</td>	Bis(2-chloroethyl)ether	ND		ug/l	50	13.	25
2.6-Dinitrotoluene ND ugfl 120 23. 25 4-Chlorophenyl phenyl ether ND ugfl 50 12. 25 4-Bromophenyl phenyl ether ND ugfl 50 9.4 25 Bis(2-chlorospropylyether ND ugfl 50 13. 25 Bis(2-chlorospropylyether ND ugfl 120 12. 25 Bis(2-chlorospropylyether ND ugfl 120 12. 25 Bis(2-chlorospropylyether ND ugfl 120 12. 25 Hexachlorocyclopentadiene ND ugfl 120 17. 25 Isophorone ND ugfl 120 19. 25 Isophorone ND ugfl 120 30. 25 ND ugfl 50 19. 25 NDPA/DPA ND ugfl 120 16. 25 Bis(2-chlyflexyl)phthalate ND ugfl 120 9. 25	3,3'-Dichlorobenzidine	ND		ug/l	120	40.	25
4-Chlorophenyl phenyl ether ND ug/l 50 12. 25 4-Bromophenyl phenyl ether ND ug/l 50 9.4 25 Bis(2-chloroisopropyl)ether ND ug/l 50 13. 25 Bis(2-chloroisopropyl)ether ND ug/l 120 12. 25 Bis(2-chloroisopropyl)ether ND ug/l 120 12. 25 Bis(2-chloroisopropyl)ether ND ug/l 50 17. 25 Bis(2-chloroisopropyl)ether ND ug/l 50 17. 25 Isophorone ND ug/l 50 19. 25 Nitrobenzene ND ug/l 50 19. 25 Nitrobenzene ND ug/l 50 10. 25 In-Nitrosodi-n-propylamine ND ug/l 50 10. 25 Bis(2-ethylhexyl)phthalate ND ug/l 120 29. 25 Bis(2-ethylhexyl)phthalate ND ug/l 120 29. 25 Di-n-butyl phthalate ND ug/l 120 32. 25 Di-n-butyl phthalate ND ug/l 120 32. 25 Di-n-butyl phthalate ND ug/l 120 32. 25 Di-n-cytyl phthalate ND ug/l 120 32. 25 Dimethyl phthalate ND ug/l 120 45. 25 Bighenyl ND ug/l 120 27. 25 Biphenyl ND ug/l 120 27. 25	2,4-Dinitrotoluene	ND		ug/l	120	29.	25
4-Bromophenyl phenyl ether ND ug/l 50 9.4 25 Bis(2-chloroisopropyl)ether ND ug/l 50 13. 25 Bis(2-chloroisopropyl)ether ND ug/l 120 12. 25 Bis(2-chloroisopropyl)ethane ND ug/l 120 12. 25 Bis(2-chloroisopropyl)ethane ND ug/l 500 17. 25 Bis(2-chloroisopropyl)ethane ND ug/l 500 17. 25 Isophorone ND ug/l 500 17. 25 Isophorone ND ug/l 50 19. 25 Nitrobenzene ND ug/l 50 19. 25 Nitrobenzene ND ug/l 50 10. 25 In-Nitrosodi-n-propylamine ND ug/l 120 16. 25 Bis(2-chlylhexyl)phthalate ND ug/l 75 38. 25 Butyl benzyl phthalate ND ug/l 120 29. 25 Di-n-butylphthalate ND ug/l 120 32. 25 Di-n-butylphthalate ND ug/l 120 32. 25 Di-n-octylphthalate ND ug/l 120 32. 25 Dimethyl phthalate ND ug/l 120 45. 25 Biphenyl ND ug/l 120 45. 25 Biphenyl ND ug/l 120 27. 25 Biphenyl ND ug/l 120 27. 25 Biphenyl ND ug/l 120 27. 25 Biphenyl ND ug/l 120 20. 25 A-Cotloroinline ND ug/l 120 20. 25 A-Rotroanline ND ug/l 120 12. 25 A-Rotroanline ND ug/l 120 13. 25	2,6-Dinitrotoluene	ND		ug/l	120	23.	25
Bis(2-chloroisopropyl)ether ND ug/l 50 13. 25 Bis(2-chloroethoxy)methane ND ug/l 120 12. 25 Hexachlorocyclopentadiene ND ug/l 500 17. 25 Isophorone ND ug/l 50 19. 25 Nitrobenzene ND ug/l 50 19. 25 NDPA/IDPA ND ug/l 50 10. 25 NDPA/IDPA ND ug/l 120 16. 25 In-Nitrosodi-n-propylamine ND ug/l 120 16. 25 Bis(2-ethylhexyl)phthalate ND ug/l 120 16. 25 Bis(2-ethylhexyl)phthalate ND ug/l 120 9. 25 Butyl benzyl phthalate ND ug/l 120 9. 25 Di-n-otylphthalate ND ug/l 120 9. 25 Di-n-butylphthalate ND ug/l 120 9.	4-Chlorophenyl phenyl ether	ND		ug/l	50	12.	25
Bis(2-chloroethoxy)methane ND	4-Bromophenyl phenyl ether	ND		ug/l	50	9.4	25
Hexachlorocyclopentadiene ND	Bis(2-chloroisopropyl)ether	ND		ug/l	50	13.	25
Sophorone ND ug/l 120 30. 25	Bis(2-chloroethoxy)methane	ND		ug/l	120	12.	25
ND	Hexachlorocyclopentadiene	ND		ug/l	500	17.	25
NDPA/DPA ND	Isophorone	ND		ug/l	120	30.	25
n-Nitrosodi-n-propylamine ND ug/l 120 16. 25 Bis(2-ethylhexyl)phthalate ND ug/l 75 38. 25 Butyl benzyl phthalate ND ug/l 120 29. 25 Di-n-butylphthalate ND ug/l 120 9.7 25 Di-n-butylphthalate ND ug/l 120 32. 25 Di-n-octylphthalate ND ug/l 120 9.5 25 Diethyl phthalate ND ug/l 120 9.5 25 Diethyl phthalate ND ug/l 120 9.5 25 Dimethyl phthalate ND ug/l 120 45. 25 Biphenyl ND ug/l 50 11. 25 4-Chloroaniline ND ug/l 120 27. 25 2-Nitroaniline ND ug/l 120 27. 25 3-Nitroaniline ND ug/l 120 20. 25 4-Nitroaniline ND ug/l 120 20. 25 4-Nitroaniline ND ug/l 120 20. 25 1.2,4,5-Tetrachlorobenzene ND ug/l 250 11. 25 Acetophenone ND ug/l 250 11. 25 Acetophenone	Nitrobenzene	ND		ug/l	50	19.	25
Bis(2-ethylhexyl)phthalate	NDPA/DPA	ND		ug/l	50	10.	25
Butyl benzyl phthalate ND ug/l 120 29. 25 Di-n-butylphthalate ND ug/l 120 9.7 25 Di-n-cylphthalate ND ug/l 120 32. 25 Di-n-cylphthalate ND ug/l 120 32. 25 Diethyl phthalate ND ug/l 120 9.5 25 Dimethyl phthalate ND ug/l 120 45. 25 Dimethyl phthalate ND ug/l 120 45. 25 Biphenyl ND ug/l 50 11. 25 4-Chloroaniline ND ug/l 120 27. 25 2-Nitroaniline ND ug/l 120 12. 25 3-Nitroaniline ND ug/l 120 20. 25 4-Nitroaniline ND ug/l 120 20. 25 Dibenzofuran ND ug/l 50 12. 25 Dibenzofuran ND ug/l 50 12. 25 Acetophenone ND ug/l 250 11. 25 Acetophenone ND ug/l 120 13. 25 Acetophenone ND	n-Nitrosodi-n-propylamine	ND		ug/l	120	16.	25
Di-n-butylphthalate ND ug/l 120 9.7 25 Di-n-octylphthalate ND ug/l 120 32. 25 Diethyl phthalate ND ug/l 120 9.5 25 Dimethyl phthalate ND ug/l 120 45. 25 Biphenyl ND ug/l 50 11. 25 4-Chloroaniline ND ug/l 120 27. 25 2-Nitroaniline ND ug/l 120 12. 25 3-Nitroaniline ND ug/l 120 20. 25 4-Nitroaniline ND ug/l 120 20. 25 Dibenzofuran ND ug/l 50 12. 25 1,2,4,5-Tetrachlorobenzene ND ug/l 250 11. 25 Acetophenone ND ug/l 120 13. 25	Bis(2-ethylhexyl)phthalate	ND		ug/l	75	38.	25
Di-n-octylphthalate ND ug/l 120 32. 25 Diethyl phthalate ND ug/l 120 9.5 25 Dimethyl phthalate ND ug/l 120 45. 25 Biphenyl ND ug/l 50 11. 25 4-Chloroaniline ND ug/l 120 27. 25 2-Nitroaniline ND ug/l 120 12. 25 3-Nitroaniline ND ug/l 120 20. 25 4-Nitroaniline ND ug/l 120 20. 25 Dibenzofuran ND ug/l 50 12. 25 1,2,4,5-Tetrachlorobenzene ND ug/l 250 11. 25 Acetophenone ND ug/l 120 13. 25	Butyl benzyl phthalate	ND		ug/l	120	29.	25
Diethyl phthalate ND ug/l 120 9.5 25 Dimethyl phthalate ND ug/l 120 45. 25 Biphenyl ND ug/l 50 11. 25 4-Chloroaniline ND ug/l 120 27. 25 2-Nitroaniline ND ug/l 120 12. 25 3-Nitroaniline ND ug/l 120 20. 25 4-Nitroaniline ND ug/l 120 20. 25 Dibenzofuran ND ug/l 50 12. 25 1,2,4,5-Tetrachlorobenzene ND ug/l 250 11. 25 Acetophenone ND ug/l 120 13. 25	Di-n-butylphthalate	ND		ug/l	120	9.7	25
Dimethyl phthalate ND ug/l 120 45. 25 Biphenyl ND ug/l 50 11. 25 4-Chloroaniline ND ug/l 120 27. 25 2-Nitroaniline ND ug/l 120 12. 25 3-Nitroaniline ND ug/l 120 20. 25 4-Nitroaniline ND ug/l 120 20. 25 Dibenzofuran ND ug/l 50 12. 25 1,2,4,5-Tetrachlorobenzene ND ug/l 250 11. 25 Acetophenone ND ug/l 120 13. 25	Di-n-octylphthalate	ND		ug/l	120	32.	25
Biphenyl ND ug/l 50 11. 25	Diethyl phthalate	ND		ug/l	120	9.5	25
4-Chloroaniline ND ug/l 120 27. 25 2-Nitroaniline ND ug/l 120 12. 25 3-Nitroaniline ND ug/l 120 20. 25 4-Nitroaniline ND ug/l 120 20. 25 1-Nitroaniline ND ug/l 120 20. 25 1-2-Nitroaniline ND ug/l 120 20. 25 1-2-Nitroaniline ND ug/l 120 20. 25 1-2-Nitroaniline ND ug/l 50 12. 25 1-2-Nitroaniline ND ug/l 250 11. 25 1-2-Nitroaniline ND ug/l 120 13. 25	Dimethyl phthalate	ND		ug/l	120	45.	25
2-Nitroaniline ND ug/l 120 12. 25 3-Nitroaniline ND ug/l 120 20. 25 4-Nitroaniline ND ug/l 120 20. 25 Dibenzofuran ND ug/l 50 12. 25 1,2,4,5-Tetrachlorobenzene ND ug/l 250 11. 25 Acetophenone ND ug/l 120 13. 25	Biphenyl	ND		ug/l	50	11.	25
3-Nitroaniline ND ug/l 120 20. 25 4-Nitroaniline ND ug/l 120 20. 25 Dibenzofuran ND ug/l 50 12. 25 1,2,4,5-Tetrachlorobenzene ND ug/l 250 11. 25 Acetophenone ND ug/l 120 13. 25	4-Chloroaniline	ND		ug/l	120	27.	25
4-Nitroaniline ND ug/l 120 20. 25 Dibenzofuran ND ug/l 50 12. 25 1,2,4,5-Tetrachlorobenzene ND ug/l 250 11. 25 Acetophenone ND ug/l 120 13. 25	2-Nitroaniline	ND		ug/l	120	12.	25
Dibenzofuran ND ug/l 50 12. 25 1,2,4,5-Tetrachlorobenzene ND ug/l 250 11. 25 Acetophenone ND ug/l 120 13. 25	3-Nitroaniline	ND		ug/l	120	20.	25
1,2,4,5-Tetrachlorobenzene ND ug/l 250 11. 25 Acetophenone ND ug/l 120 13. 25	4-Nitroaniline	ND		ug/l	120	20.	25
Acetophenone ND ug/l 120 13. 25	Dibenzofuran	ND		ug/l	50	12.	25
	1,2,4,5-Tetrachlorobenzene	ND		ug/l	250	11.	25
2,4,6-Trichlorophenol ND ug/l 120 15. 25	Acetophenone	ND		ug/l	120	13.	25
	2,4,6-Trichlorophenol	ND		ug/l	120	15.	25

05/10/19

Project Name: 641 WEST AVE (NIAGARA COUNTY) Lab Number: L1917771

Project Number: Not Specified

SAMPLE RESULTS

Date Collected: 04/30/19 11:25

Report Date:

Lab ID: L1917771-01 D

Date Received: 04/30/19 MW-1 Sample Location: 641 WEST AVE, LOCKPORT, NY Field Prep: Not Specified

Sample Depth:

Client ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - V	Vestborough Lab						
p-Chloro-m-cresol	ND		ug/l	50	8.8	25	
2-Chlorophenol	ND		ug/l	50	12.	25	
2,4-Dichlorophenol	ND		ug/l	120	10.	25	
2,4-Dimethylphenol	ND		ug/l	120	44.	25	
2-Nitrophenol	ND		ug/l	250	21.	25	
4-Nitrophenol	ND		ug/l	250	17.	25	
2,4-Dinitrophenol	ND		ug/l	500	170	25	
4,6-Dinitro-o-cresol	ND		ug/l	250	45.	25	
Phenol	ND		ug/l	120	14.	25	
3-Methylphenol/4-Methylphenol	ND		ug/l	120	12.	25	
2,4,5-Trichlorophenol	ND		ug/l	120	19.	25	
Carbazole	ND		ug/l	50	12.	25	
Atrazine	ND		ug/l	250	19.	25	
Benzaldehyde	ND		ug/l	120	13.	25	
Caprolactam	ND		ug/l	250	82.	25	
2,3,4,6-Tetrachlorophenol	ND		ug/l	120	21.	25	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2-Fluorophenol	0	Q	21-120	
Phenol-d6	0	Q	10-120	
Nitrobenzene-d5	0	Q	23-120	
2-Fluorobiphenyl	0	Q	15-120	
2,4,6-Tribromophenol	0	Q	10-120	
4-Terphenyl-d14	0	Q	41-149	

Project Name: 641 WEST AVE (NIAGARA COUNTY) Lab Number: L1917771

Project Number: Not Specified Report Date: 05/10/19

SAMPLE RESULTS

Lab ID: L1917771-01 D Date Collected: 04/30/19 11:25

Client ID: MW-1 Date Received: 04/30/19
Sample Location: 641 WEST AVE, LOCKPORT, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8270D-SIM Extraction Date: 05/04/19 01:09
Analytical Date: 05/10/19 16:26

Analyst: DV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS-SIN	1 - Westborough La	ab				
Acenaphthene	110		ug/l	5.0	0.72	50
2-Chloronaphthalene	ND		ug/l	10	0.90	50
Fluoranthene	4.2	J	ug/l	5.0	1.0	50
Hexachlorobutadiene	ND		ug/l	25	2.3	50
Naphthalene	21		ug/l	5.0	2.4	50
Benzo(a)anthracene	ND		ug/l	5.0	0.99	50
Benzo(a)pyrene	ND		ug/l	5.0	0.75	50
Benzo(b)fluoranthene	ND		ug/l	5.0	0.58	50
Benzo(k)fluoranthene	ND		ug/l	5.0	0.44	50
Chrysene	ND		ug/l	5.0	0.60	50
Acenaphthylene	61		ug/l	5.0	0.61	50
Anthracene	52		ug/l	5.0	0.72	50
Benzo(ghi)perylene	ND		ug/l	5.0	0.68	50
Fluorene	180		ug/l	5.0	0.73	50
Phenanthrene	610		ug/l	5.0	1.2	50
Dibenzo(a,h)anthracene	ND		ug/l	5.0	0.64	50
Indeno(1,2,3-cd)pyrene	ND		ug/l	5.0	0.61	50
Pyrene	17		ug/l	5.0	0.95	50
2-Methylnaphthalene	35		ug/l	5.0	1.1	50
Pentachlorophenol	ND		ug/l	40	0.72	50
Hexachlorobenzene	ND		ug/l	40	0.47	50
Hexachloroethane	ND		ug/l	40	3.2	50

05/10/19

04/30/19 11:25

Project Name: 641 WEST AVE (NIAGARA COUNTY) Lab Number: L1917771

Project Number: Not Specified

SAMPLE RESULTS

Report Date:

Lab ID: L1917771-01 D Date Collected:

Client ID: MW-1 Date Received: 04/30/19
Sample Location: 641 WEST AVE, LOCKPORT, NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria
2-Fluorophenol	0	Q	21-120
Phenol-d6	0	Q	10-120
Nitrobenzene-d5	0	Q	23-120
2-Fluorobiphenyl	0	Q	15-120
2,4,6-Tribromophenol	0	Q	10-120
4-Terphenyl-d14	0	Q	41-149

05/10/19

Report Date:

Project Name: 641 WEST AVE (NIAGARA COUNTY) Lab Number: L1917771

Project Number: Not Specified

SAMPLE RESULTS

Lab ID: L1917771-02 D Date Collected: 04/30/19 12:50

Client ID: MW-2 Date Received: 04/30/19

Sample Location: 641 WEST AVE, LOCKPORT, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C
Analytical Method: 1,8270D Extraction Date: 05/04/19 01:00

Analytical Date: 05/08/19 12:08

Analyst: SZ

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - V	Vestborough Lab						
Bis(2-chloroethyl)ether	ND		ug/l	20	5.0	10	
3,3'-Dichlorobenzidine	ND		ug/l	50	16.	10	
2,4-Dinitrotoluene	ND		ug/l	50	12.	10	
2,6-Dinitrotoluene	ND		ug/l	50	9.3	10	
4-Chlorophenyl phenyl ether	ND		ug/l	20	4.9	10	
4-Bromophenyl phenyl ether	ND		ug/l	20	3.8	10	
Bis(2-chloroisopropyl)ether	ND		ug/l	20	5.3	10	
Bis(2-chloroethoxy)methane	ND		ug/l	50	5.0	10	
Hexachlorocyclopentadiene	ND		ug/l	200	6.9	10	
Isophorone	ND		ug/l	50	12.	10	
Nitrobenzene	ND		ug/l	20	7.7	10	
NDPA/DPA	ND		ug/l	20	4.2	10	
n-Nitrosodi-n-propylamine	ND		ug/l	50	6.4	10	
Bis(2-ethylhexyl)phthalate	ND		ug/l	30	15.	10	
Butyl benzyl phthalate	ND		ug/l	50	12.	10	
Di-n-butylphthalate	ND		ug/l	50	3.9	10	
Di-n-octylphthalate	ND		ug/l	50	13.	10	
Diethyl phthalate	ND		ug/l	50	3.8	10	
Dimethyl phthalate	ND		ug/l	50	18.	10	
Biphenyl	ND		ug/l	20	4.6	10	
4-Chloroaniline	ND		ug/l	50	11.	10	
2-Nitroaniline	ND		ug/l	50	5.0	10	
3-Nitroaniline	ND		ug/l	50	8.1	10	
4-Nitroaniline	ND		ug/l	50	8.0	10	
Dibenzofuran	ND		ug/l	20	5.0	10	
1,2,4,5-Tetrachlorobenzene	ND		ug/l	100	4.4	10	
Acetophenone	ND		ug/l	50	5.3	10	
2,4,6-Trichlorophenol	ND		ug/l	50	6.1	10	

05/10/19

Project Name: 641 WEST AVE (NIAGARA COUNTY) Lab Number: L1917771

Project Number: Not Specified

SAMPLE RESULTS

Date Collected: 04/30/19 12:50

Report Date:

Lab ID: L1917771-02 D
Client ID: MW-2

Client ID: MW-2 Date Received: 04/30/19
Sample Location: 641 WEST AVE, LOCKPORT, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS -	Westborough Lab					
p-Chloro-m-cresol	ND		ug/l	20	3.5	10
2-Chlorophenol	ND		ug/l	20	4.8	10
2,4-Dichlorophenol	ND		ug/l	50	4.1	10
2,4-Dimethylphenol	ND		ug/l	50	18.	10
2-Nitrophenol	ND		ug/l	100	8.5	10
4-Nitrophenol	ND		ug/l	100	6.7	10
2,4-Dinitrophenol	ND		ug/l	200	66.	10
4,6-Dinitro-o-cresol	ND		ug/l	100	18.	10
Phenol	ND		ug/l	50	5.7	10
3-Methylphenol/4-Methylphenol	ND		ug/l	50	4.8	10
2,4,5-Trichlorophenol	ND		ug/l	50	7.7	10
Carbazole	ND		ug/l	20	4.9	10
Atrazine	ND		ug/l	100	7.6	10
Benzaldehyde	ND		ug/l	50	5.3	10
Caprolactam	ND		ug/l	100	33.	10
2,3,4,6-Tetrachlorophenol	ND		ug/l	50	8.4	10

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	89	21-120	
Phenol-d6	74	10-120	
Nitrobenzene-d5	118	23-120	
2-Fluorobiphenyl	90	15-120	
2,4,6-Tribromophenol	95	10-120	
4-Terphenyl-d14	101	41-149	

Project Name: Lab Number: 641 WEST AVE (NIAGARA COUNTY) L1917771

Project Number: Report Date: Not Specified 05/10/19

SAMPLE RESULTS

Lab ID: D Date Collected: 04/30/19 12:50 L1917771-02

Date Received: Client ID: MW-2 04/30/19 Sample Location: 641 WEST AVE, LOCKPORT, NY Field Prep: Not Specified

05/09/19 11:34

Sample Depth:

Extraction Method: EPA 3510C Matrix: Water

Extraction Date: 05/04/19 01:09 Analytical Method: 1,8270D-SIM Analytical Date:

Analyst: DV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS-SIN	и - Westborough La	ıb				
Acenaphthene	1.5		ug/l	1.0	0.14	10
2-Chloronaphthalene	ND		ug/l	2.0	0.18	10
Fluoranthene	3.1		ug/l	1.0	0.20	10
Hexachlorobutadiene	ND		ug/l	5.0	0.47	10
Naphthalene	130		ug/l	1.0	0.49	10
Benzo(a)anthracene	1.2		ug/l	1.0	0.20	10
Benzo(a)pyrene	1.1		ug/l	1.0	0.15	10
Benzo(b)fluoranthene	1.0		ug/l	1.0	0.12	10
Benzo(k)fluoranthene	0.62	J	ug/l	1.0	0.09	10
Chrysene	1.6		ug/l	1.0	0.12	10
Acenaphthylene	1.8		ug/l	1.0	0.12	10
Anthracene	1.3		ug/l	1.0	0.14	10
Benzo(ghi)perylene	0.96	J	ug/l	1.0	0.14	10
Fluorene	3.7		ug/l	1.0	0.14	10
Phenanthrene	12		ug/l	1.0	0.23	10
Dibenzo(a,h)anthracene	ND		ug/l	1.0	0.13	10
Indeno(1,2,3-cd)pyrene	0.44	J	ug/l	1.0	0.12	10
Pyrene	5.5		ug/l	1.0	0.19	10
2-Methylnaphthalene	140		ug/l	1.0	0.22	10
Pentachlorophenol	ND		ug/l	8.0	0.14	10
Hexachlorobenzene	ND		ug/l	8.0	0.09	10
Hexachloroethane	ND		ug/l	8.0	0.63	10

Project Name: Lab Number: 641 WEST AVE (NIAGARA COUNTY) L1917771

Project Number: Not Specified

SAMPLE RESULTS

Report Date: 05/10/19

Lab ID: D Date Collected: L1917771-02 04/30/19 12:50

Date Received: Client ID: 04/30/19 MW-2 Sample Location: Field Prep: 641 WEST AVE, LOCKPORT, NY Not Specified

Sample Depth:

Result Qualifier Units RL MDL **Dilution Factor** Parameter

Semivolatile Organics by GC/MS-SIM - Westborough Lab

% Recovery	Acceptance Qualifier Criteria
42	21-120
46	10-120
102	23-120
77	15-120
41	10-120
87	41-149
	42 46 102 77 41

05/10/19

Report Date:

Project Name: Lab Number: 641 WEST AVE (NIAGARA COUNTY) L1917771

Project Number: Not Specified

SAMPLE RESULTS

Lab ID: D Date Collected: 04/30/19 11:00 L1917771-03

Client ID: MW-3

Date Received: 04/30/19 641 WEST AVE, LOCKPORT, NY Sample Location: Field Prep: Not Specified

Sample Depth:

Extraction Method: EPA 3510C Matrix: Water **Extraction Date:** 05/04/19 01:00 Analytical Method: 1,8270D

Analytical Date: 05/08/19 12:34

Analyst: SZ

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - We	stborough Lab					
Bis(2-chloroethyl)ether	ND		ug/l	20	5.0	10
3,3'-Dichlorobenzidine	ND		ug/l	50	16.	10
2,4-Dinitrotoluene	ND		ug/l	50	12.	10
2,6-Dinitrotoluene	ND		ug/l	50	9.3	10
4-Chlorophenyl phenyl ether	ND		ug/l	20	4.9	10
4-Bromophenyl phenyl ether	ND		ug/l	20	3.8	10
Bis(2-chloroisopropyl)ether	ND		ug/l	20	5.3	10
Bis(2-chloroethoxy)methane	ND		ug/l	50	5.0	10
Hexachlorocyclopentadiene	ND		ug/l	200	6.9	10
Isophorone	ND		ug/l	50	12.	10
Nitrobenzene	ND		ug/l	20	7.7	10
NDPA/DPA	ND		ug/l	20	4.2	10
n-Nitrosodi-n-propylamine	ND		ug/l	50	6.4	10
Bis(2-ethylhexyl)phthalate	ND		ug/l	30	15.	10
Butyl benzyl phthalate	ND		ug/l	50	12.	10
Di-n-butylphthalate	ND		ug/l	50	3.9	10
Di-n-octylphthalate	ND		ug/l	50	13.	10
Diethyl phthalate	ND		ug/l	50	3.8	10
Dimethyl phthalate	ND		ug/l	50	18.	10
Biphenyl	ND		ug/l	20	4.6	10
4-Chloroaniline	ND		ug/l	50	11.	10
2-Nitroaniline	ND		ug/l	50	5.0	10
3-Nitroaniline	ND		ug/l	50	8.1	10
4-Nitroaniline	ND		ug/l	50	8.0	10
Dibenzofuran	ND		ug/l	20	5.0	10
1,2,4,5-Tetrachlorobenzene	ND		ug/l	100	4.4	10
Acetophenone	ND		ug/l	50	5.3	10
2,4,6-Trichlorophenol	ND		ug/l	50	6.1	10

05/10/19

Project Name: 641 WEST AVE (NIAGARA COUNTY) Lab Number: L1917771

Project Number: Not Specified

SAMPLE RESULTS

Date Collected: 04/30/19 11:00

Report Date:

Lab ID: L1917771-03 D

Client ID: MW-3 Date Received: 04/30/19
Sample Location: 641 WEST AVE, LOCKPORT, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS -	Westborough Lab					
p-Chloro-m-cresol	ND		ug/l	20	3.5	10
2-Chlorophenol	ND		ug/l	20	4.8	10
2,4-Dichlorophenol	ND		ug/l	50	4.1	10
2,4-Dimethylphenol	ND		ug/l	50	18.	10
2-Nitrophenol	ND		ug/l	100	8.5	10
4-Nitrophenol	ND		ug/l	100	6.7	10
2,4-Dinitrophenol	ND		ug/l	200	66.	10
4,6-Dinitro-o-cresol	ND		ug/l	100	18.	10
Phenol	ND		ug/l	50	5.7	10
3-Methylphenol/4-Methylphenol	ND		ug/l	50	4.8	10
2,4,5-Trichlorophenol	ND		ug/l	50	7.7	10
Carbazole	ND		ug/l	20	4.9	10
Atrazine	ND		ug/l	100	7.6	10
Benzaldehyde	ND		ug/l	50	5.3	10
Caprolactam	ND		ug/l	100	33.	10
2,3,4,6-Tetrachlorophenol	ND		ug/l	50	8.4	10

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2-Fluorophenol	67		21-120	
Phenol-d6	69		10-120	
Nitrobenzene-d5	199	Q	23-120	
2-Fluorobiphenyl	90		15-120	
2,4,6-Tribromophenol	104		10-120	
4-Terphenyl-d14	87		41-149	

Project Name: 641 WEST AVE (NIAGARA COUNTY) Lab Number: L1917771

Project Number: Not Specified Report Date: 05/10/19

SAMPLE RESULTS

Lab ID: L1917771-03 D Date Collected: 04/30/19 11:00

Client ID: MW-3 Date Received: 04/30/19
Sample Location: 641 WEST AVE, LOCKPORT, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8270D-SIM Extraction Date: 05/04/19 01:09
Analytical Date: 05/09/19 20:41

Analyst: DV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS-S	SIM - Westborough La	ab					
Acenaphthene	ND		ug/l	1.0	0.14	10	
2-Chloronaphthalene	ND		ug/l	2.0	0.18	10	
Fluoranthene	0.54	J	ug/l	1.0	0.20	10	
Hexachlorobutadiene	ND		ug/l	5.0	0.47	10	
Naphthalene	4.1		ug/l	1.0	0.49	10	
Benzo(a)anthracene	0.44	J	ug/l	1.0	0.20	10	
Benzo(a)pyrene	0.32	J	ug/l	1.0	0.15	10	
Benzo(b)fluoranthene	0.41	J	ug/l	1.0	0.12	10	
Benzo(k)fluoranthene	0.15	J	ug/l	1.0	0.09	10	
Chrysene	0.82	J	ug/l	1.0	0.12	10	
Acenaphthylene	ND		ug/l	1.0	0.12	10	
Anthracene	0.21	J	ug/l	1.0	0.14	10	
Benzo(ghi)perylene	0.17	J	ug/l	1.0	0.14	10	
Fluorene	6.1		ug/l	1.0	0.14	10	
Phenanthrene	3.0		ug/l	1.0	0.23	10	
Dibenzo(a,h)anthracene	ND		ug/l	1.0	0.13	10	
Indeno(1,2,3-cd)pyrene	0.18	J	ug/l	1.0	0.12	10	
Pyrene	0.79	J	ug/l	1.0	0.19	10	
2-Methylnaphthalene	90		ug/l	1.0	0.22	10	
Pentachlorophenol	ND		ug/l	8.0	0.14	10	
Hexachlorobenzene	ND		ug/l	8.0	0.09	10	
Hexachloroethane	ND		ug/l	8.0	0.63	10	

05/10/19

Project Name: Lab Number: 641 WEST AVE (NIAGARA COUNTY) L1917771

Project Number: Not Specified

SAMPLE RESULTS

Report Date:

Lab ID: D Date Collected: 04/30/19 11:00 L1917771-03

Date Received: Client ID: 04/30/19 MW-3 Sample Location: Field Prep: 641 WEST AVE, LOCKPORT, NY Not Specified

Sample Depth:

Result Qualifier Units RL MDL **Dilution Factor** Parameter

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2-Fluorophenol	61		21-120	
Phenol-d6	37		10-120	
Nitrobenzene-d5	160	Q	23-120	
2-Fluorobiphenyl	84		15-120	
2,4,6-Tribromophenol	60		10-120	
4-Terphenyl-d14	90		41-149	

05/10/19

Project Name: Lab Number: 641 WEST AVE (NIAGARA COUNTY) L1917771

Project Number: Not Specified

SAMPLE RESULTS

Date Collected: 04/30/19 14:20

Report Date:

Lab ID: L1917771-04 Date Received: Client ID: 04/30/19 **EQUIPMENT BLANK**

Sample Location: Field Prep: 641 WEST AVE, LOCKPORT, NY Not Specified

Sample Depth:

Extraction Method: EPA 3510C Matrix: Water 05/04/19 01:00 **Extraction Date:** Analytical Method: 1,8270D

Analytical Date: 05/08/19 11:16

Analyst: SZ

4-Bromophenyl phenyl ether ND ug/l 2.0 0.38 1 Bis(2-chloroisopropyl)ether ND ug/l 2.0 0.53 1 Bis(2-chloroethoxy)methane ND ug/l 5.0 0.50 1 Hexachlorocyclopentadiene ND ug/l 5.0 0.69 1 Isophorone ND ug/l 5.0 1.2 1 Nitrobenzene ND ug/l 2.0 0.777 1 Nitrobenzene ND ug/l 2.0 0.777 1 Nitrobenzene ND ug/l 2.0 0.777 1 NIPA/DPA ND ug/l 2.0 0.42 1 n-Nitrosodi-n-propylamine ND ug/l 5.0 0.64 1 Bis(2-ethlylhexyl)phthalate 3.1 ug/l 3.0 1.5 1 Butyl benzyl phthalate ND ug/l 5.0 0.39 1 Di-n-butylphthalate ND ug/l 5.0 0.39 1 Di-n-butylphthalate ND ug/l 5.0 0.39 1 Di-n-butylphthalate ND ug/l 5.0 0.38 1 Din-butylphthalate ND ug/l 5.0 0.38 1 Dimethyl phthalate ND ug/l 5.0 0.46 1	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
3,3-Dichlorobenzidine ND ug/l 5,0 1,6 1	Semivolatile Organics by GC/MS - \	Westborough Lab					
2.4-Dinitrotoluene	Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.50	1
2.6-Dinitrotoluene ND ug/l 5.0 0.93 1 4-Chlorophenyl phenyl ether ND ug/l 2.0 0.49 1 4-Bromophenyl phenyl ether ND ug/l 2.0 0.38 1 Bis(2-chlorospropylether ND ug/l 2.0 0.53 1 Bis(2-chlorosthoxy)methane ND ug/l 5.0 0.50 1 Hexachlorocyclopentadiene ND ug/l 5.0 0.50 1 Isophorone ND ug/l 5.0 0.69 1 Isophorone ND ug/l 5.0 0.69 1 ND ug/l 2.0 0.77 1 ND ug/l 2.0 0.77 1 ND ug/l 2.0 0.42 1 In-Nitrosodi-n-propylamine ND ug/l 5.0 0.64 1 Bis(2-chlyhkexyl)phthalate 3.1 ug/l 5.0 0.64 1 Butyl benzyl phthalate <td>3,3'-Dichlorobenzidine</td> <td>ND</td> <td></td> <td>ug/l</td> <td>5.0</td> <td>1.6</td> <td>1</td>	3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.6	1
4-Chlorophenyl phenyl ether ND ug/l 2.0 0.49 1 4-Bromophenyl phenyl ether ND ug/l 2.0 0.38 1 Bis(2-chloroisopropyl)ether ND ug/l 2.0 0.53 1 Bis(2-chloroisopropyl)ether ND ug/l 5.0 0.50 1 Hexachlorocyclopentadiene ND ug/l 5.0 0.69 1 Hoxachlorocyclopentadiene ND ug/l 5.0 1.2 1 NItrobenzene ND ug/l 2.0 0.77 1 Nitrobenzene ND ug/l 2.0 0.42 1 N-Nitrosodi-n-propylamine ND ug/l 5.0 0.64 1 Bis(2-ethylhexyl)phthalate 3.1 ug/l 3.0 1.5 1 Butyl benzyl phthalate ND ug/l 5.0 0.39 1 Di-n-butylphthalate ND ug/l 5.0 0.39 1 Di-n-cytylphthalate ND ug/l 5.0 0.39 1 Di-n-cytylphthalate ND ug/l 5.0 0.38 1 Dimethyl phthalate ND ug/l 5.0 0.46 1	2,4-Dinitrotoluene	ND		ug/l	5.0	1.2	1
4-Bromophenyl phenyl ether ND ug/l 2.0 0.38 1 Bis(2-chloroisopropyl)ether ND ug/l 2.0 0.53 1 Bis(2-chloroisopropyl)ether ND ug/l 5.0 0.50 1 Hexachlorocyclopentadiene ND ug/l 5.0 0.50 1 Isophorone ND ug/l 5.0 1.2 1 Nitrobenzene ND ug/l 2.0 0.69 1 Nitrobenzene ND ug/l 2.0 0.77 1 Nitrobenzene ND ug/l 2.0 0.77 1 Nitrobenzene ND ug/l 2.0 0.42 1 N-Nitrosodi-n-propylamine ND ug/l 5.0 0.64 1 Bis(2-ethylhexyl)phthalate 3.1 ug/l 3.0 1.5 1 Butyl benzyl phthalate ND ug/l 5.0 0.39 1 Di-n-butylphthalate ND ug/l 5.0 0.39 1 Di-n-butylphthalate ND ug/l 5.0 0.39 1 Di-n-octylphthalate ND ug/l 5.0 0.38 1 Dimethyl phthalate ND ug/l 5.0 0.46 1	2,6-Dinitrotoluene	ND		ug/l	5.0	0.93	1
Bis(2-chloroisopropyl)ether ND	4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.49	1
Bis(2-chloroethoxy)methane ND ug/l 5.0 0.50 1	4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.38	1
Hexachlorocyclopentadiene ND	Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.53	1
Sophorone ND ug/l 5.0 1.2 1	Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.50	1
NItrobenzene ND	Hexachlorocyclopentadiene	ND		ug/l	20	0.69	1
NDPA/DPA ND	Isophorone	ND		ug/l	5.0	1.2	1
ND ND ND ND ND ND ND ND	Nitrobenzene	ND		ug/l	2.0	0.77	1
Bis(2-ethylhexyl)phthalate 3.1 ug/l 3.0 1.5 1	NDPA/DPA	ND		ug/l	2.0	0.42	1
Butyl benzyl phthalate ND ug/l 5.0 1.2 1	n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.64	1
Di-n-butylphthalate ND ug/l 5.0 0.39 1 Di-n-octylphthalate ND ug/l 5.0 1.3 1 Diethyl phthalate 0.66 J ug/l 5.0 0.38 1 Dimethyl phthalate ND ug/l 5.0 1.8 1 Biphenyl ND ug/l 2.0 0.46 1 4-Chloroaniline ND ug/l 5.0 1.1 1 2-Nitroaniline ND ug/l 5.0 0.50 1 3-Nitroaniline ND ug/l 5.0 0.81 1 4-Nitroaniline ND ug/l 5.0 0.80 1 Dibenzofuran ND ug/l 2.0 0.50 1 1,2,4,5-Tetrachlorobenzene ND ug/l 5.0 0.53 1 Acetophenone ND ug/l 5.0 0.53 1	Bis(2-ethylhexyl)phthalate	3.1		ug/l	3.0	1.5	1
Di-n-octylphthalate ND ug/l 5.0 1.3 1 Diethyl phthalate 0.66 J ug/l 5.0 0.38 1 Dimethyl phthalate ND ug/l 5.0 1.8 1 Biphenyl ND ug/l 2.0 0.46 1 4-Chloroaniline ND ug/l 5.0 1.1 1 2-Nitroaniline ND ug/l 5.0 0.50 1 3-Nitroaniline ND ug/l 5.0 0.81 1 4-Nitroaniline ND ug/l 5.0 0.80 1 Dibenzofuran ND ug/l 2.0 0.50 1 1,2,4,5-Tetrachlorobenzene ND ug/l 5.0 0.53 1 Acetophenone ND ug/l 5.0 0.53 1	Butyl benzyl phthalate	ND		ug/l	5.0	1.2	1
Diethyl phthalate 0.66 J ug/l 5.0 0.38 1 Dimethyl phthalate ND ug/l 5.0 1.8 1 Biphenyl ND ug/l 2.0 0.46 1 4-Chloroaniline ND ug/l 5.0 1.1 1 2-Nitroaniline ND ug/l 5.0 0.50 1 3-Nitroaniline ND ug/l 5.0 0.81 1 4-Nitroaniline ND ug/l 5.0 0.80 1 Dibenzofuran ND ug/l 2.0 0.50 1 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.44 1 Acetophenone ND ug/l 5.0 0.53 1	Di-n-butylphthalate	ND		ug/l	5.0	0.39	1
Dimethyl phthalate NID ug/l 5.0 1.8 1	Di-n-octylphthalate	ND		ug/l	5.0	1.3	1
Biphenyl ND ug/l 2.0 0.46 1	Diethyl phthalate	0.66	J	ug/l	5.0	0.38	1
4-Chloroaniline ND ug/l 5.0 1.1 1 2-Nitroaniline ND ug/l 5.0 0.50 1 3-Nitroaniline ND ug/l 5.0 0.81 1 4-Nitroaniline ND ug/l 5.0 0.80 1 Dibenzofuran ND ug/l 5.0 0.80 1 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.44 1 Acetophenone ND ug/l 5.0 0.53 1	Dimethyl phthalate	ND		ug/l	5.0	1.8	1
2-Nitroaniline ND ug/l 5.0 0.50 1 3-Nitroaniline ND ug/l 5.0 0.81 1 4-Nitroaniline ND ug/l 5.0 0.80 1 Dibenzofuran ND ug/l 2.0 0.50 1 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.44 1 Acetophenone ND ug/l 5.0 0.53 1	Biphenyl	ND		ug/l	2.0	0.46	1
3-Nitroaniline ND ug/l 5.0 0.81 1 4-Nitroaniline ND ug/l 5.0 0.80 1 Dibenzofuran ND ug/l 2.0 0.50 1 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.44 1 Acetophenone ND ug/l 5.0 0.53 1	4-Chloroaniline	ND		ug/l	5.0	1.1	1
4-Nitroaniline ND ug/l 5.0 0.80 1 Dibenzofuran ND ug/l 2.0 0.50 1 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.44 1 Acetophenone ND ug/l 5.0 0.53 1	2-Nitroaniline	ND		ug/l	5.0	0.50	1
Dibenzofuran ND ug/l 2.0 0.50 1 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.44 1 Acetophenone ND ug/l 5.0 0.53 1	3-Nitroaniline	ND		ug/l	5.0	0.81	1
1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.44 1 Acetophenone ND ug/l 5.0 0.53 1	4-Nitroaniline	ND		ug/l	5.0	0.80	1
Acetophenone ND ug/l 5.0 0.53 1	Dibenzofuran	ND		ug/l	2.0	0.50	1
	1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.44	1
2,4,6-Trichlorophenol ND ug/l 5.0 0.61 1	Acetophenone	ND		ug/l	5.0	0.53	1
	2,4,6-Trichlorophenol	ND		ug/l	5.0	0.61	1

05/10/19

Project Name: 641 WEST AVE (NIAGARA COUNTY) Lab Number: L1917771

Project Number: Not Specified

SAMPLE RESULTS

Date Collected: 04/30/19 14:20

Report Date:

Lab ID: L1917771-04 Client ID: Date Received: 04/30/19 **EQUIPMENT BLANK**

Field Prep: Sample Location: 641 WEST AVE, LOCKPORT, NY Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS -	Westborough Lab					
p-Chloro-m-cresol	ND		ug/l	2.0	0.35	1
2-Chlorophenol	ND		ug/l	2.0	0.48	1
2,4-Dichlorophenol	ND		ug/l	5.0	0.41	1
2,4-Dimethylphenol	ND		ug/l	5.0	1.8	1
2-Nitrophenol	ND		ug/l	10	0.85	1
4-Nitrophenol	ND		ug/l	10	0.67	1
2,4-Dinitrophenol	ND		ug/l	20	6.6	1
4,6-Dinitro-o-cresol	ND		ug/l	10	1.8	1
Phenol	ND		ug/l	5.0	0.57	1
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	0.48	1
2,4,5-Trichlorophenol	ND		ug/l	5.0	0.77	1
Carbazole	ND		ug/l	2.0	0.49	1
Atrazine	ND		ug/l	10	0.76	1
Benzaldehyde	2.1	J	ug/l	5.0	0.53	1
Caprolactam	ND		ug/l	10	3.3	1
2,3,4,6-Tetrachlorophenol	ND		ug/l	5.0	0.84	1

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	58	21-120
Phenol-d6	55	10-120
Nitrobenzene-d5	81	23-120
2-Fluorobiphenyl	78	15-120
2,4,6-Tribromophenol	53	10-120
4-Terphenyl-d14	79	41-149

05/10/19

Report Date:

Project Name: Lab Number: 641 WEST AVE (NIAGARA COUNTY) L1917771

Project Number: Not Specified

SAMPLE RESULTS

Lab ID: Date Collected: 04/30/19 14:20 L1917771-04

Date Received: Client ID: **EQUIPMENT BLANK** 04/30/19

Sample Location: 641 WEST AVE, LOCKPORT, NY Field Prep: Not Specified

Sample Depth:

Extraction Method: EPA 3510C Matrix: Water

Extraction Date: 05/04/19 01:09 Analytical Method: 1,8270D-SIM Analytical Date: 05/05/19 20:01

Analyst: JJW

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS	S-SIM - Westborough La	ıb					
Acenaphthene	ND		ug/l	0.10	0.01	1	
2-Chloronaphthalene	ND		ug/l	0.20	0.02	1	
Fluoranthene	ND		ug/l	0.10	0.02	1	
Hexachlorobutadiene	ND		ug/l	0.50	0.05	1	
Naphthalene	ND		ug/l	0.10	0.05	1	
Benzo(a)anthracene	ND		ug/l	0.10	0.02	1	
Benzo(a)pyrene	ND		ug/l	0.10	0.02	1	
Benzo(b)fluoranthene	ND		ug/l	0.10	0.01	1	
Benzo(k)fluoranthene	ND		ug/l	0.10	0.01	1	
Chrysene	ND		ug/l	0.10	0.01	1	
Acenaphthylene	ND		ug/l	0.10	0.01	1	
Anthracene	ND		ug/l	0.10	0.01	1	
Benzo(ghi)perylene	ND		ug/l	0.10	0.01	1	
Fluorene	0.02	J	ug/l	0.10	0.01	1	
Phenanthrene	0.05	J	ug/l	0.10	0.02	1	
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.01	1	
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10	0.01	1	
Pyrene	ND		ug/l	0.10	0.02	1	
2-Methylnaphthalene	ND		ug/l	0.10	0.02	1	
Pentachlorophenol	ND		ug/l	0.80	0.01	1	
Hexachlorobenzene	ND		ug/l	0.80	0.01	1	
Hexachloroethane	ND		ug/l	0.80	0.06	1	

05/10/19

Project Name: Lab Number: 641 WEST AVE (NIAGARA COUNTY) L1917771

Project Number: Not Specified

SAMPLE RESULTS

Date Collected: 04/30/19 14:20

Report Date:

Lab ID: L1917771-04

Date Received: Client ID: 04/30/19 **EQUIPMENT BLANK** Sample Location: Field Prep: 641 WEST AVE, LOCKPORT, NY Not Specified

Sample Depth:

Result Qualifier Units RL MDL **Dilution Factor** Parameter

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2-Fluorophenol	59		21-120	
Phenol-d6	54		10-120	
Nitrobenzene-d5	76		23-120	
2-Fluorobiphenyl	88		15-120	
2,4,6-Tribromophenol	123	Q	10-120	
4-Terphenyl-d14	97		41-149	

L1917771

Lab Number:

Project Name: 641 WEST AVE (NIAGARA COUNTY)

Project Number: Not Specified Report Date: 05/10/19

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Extraction Method: EPA 3510C
Analytical Date: 05/07/19 03:59 Extraction Date: 05/04/19 01:00

Analyst: JG

arameter	Result	Qualifier	Units	RL		MDL
emivolatile Organics by GC/MS	- Westborough	Lab for s	ample(s):	01-04	Batch:	WG1233537-1
Bis(2-chloroethyl)ether	ND		ug/l	2.0		0.50
3,3'-Dichlorobenzidine	ND		ug/l	5.0		1.6
2,4-Dinitrotoluene	ND		ug/l	5.0		1.2
2,6-Dinitrotoluene	ND		ug/l	5.0		0.93
4-Chlorophenyl phenyl ether	ND		ug/l	2.0		0.49
4-Bromophenyl phenyl ether	ND		ug/l	2.0		0.38
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0		0.53
Bis(2-chloroethoxy)methane	ND		ug/l	5.0		0.50
Hexachlorocyclopentadiene	ND		ug/l	20		0.69
Isophorone	ND		ug/l	5.0		1.2
Nitrobenzene	ND		ug/l	2.0		0.77
NDPA/DPA	ND		ug/l	2.0		0.42
n-Nitrosodi-n-propylamine	ND		ug/l	5.0		0.64
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0		1.5
Butyl benzyl phthalate	ND		ug/l	5.0		1.2
Di-n-butylphthalate	ND		ug/l	5.0		0.39
Di-n-octylphthalate	ND		ug/l	5.0		1.3
Diethyl phthalate	ND		ug/l	5.0		0.38
Dimethyl phthalate	ND		ug/l	5.0		1.8
Biphenyl	ND		ug/l	2.0		0.46
4-Chloroaniline	ND		ug/l	5.0		1.1
2-Nitroaniline	ND		ug/l	5.0		0.50
3-Nitroaniline	ND		ug/l	5.0		0.81
4-Nitroaniline	ND		ug/l	5.0		0.80
Dibenzofuran	ND		ug/l	2.0		0.50
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10		0.44
Acetophenone	ND		ug/l	5.0		0.53
2,4,6-Trichlorophenol	ND		ug/l	5.0		0.61
p-Chloro-m-cresol	ND		ug/l	2.0		0.35

Project Name: 641 WEST AVE (NIAGARA COUNTY)

Project Number: Not Specified

Lab Number:

L1917771

Report Date: 05/10/19

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 05/07/19 03:59

Analyst: JG

Extraction Method: EPA 3510C Extraction Date: 05/04/19 01:00

arameter	Result	Qualifier	Units	RL		MDL
emivolatile Organics by GC/MS	S - Westboroug	h Lab for s	ample(s):	01-04	Batch:	WG1233537-1
2-Chlorophenol	ND		ug/l	2.0		0.48
2,4-Dichlorophenol	ND		ug/l	5.0		0.41
2,4-Dimethylphenol	ND		ug/l	5.0		1.8
2-Nitrophenol	ND		ug/l	10		0.85
4-Nitrophenol	ND		ug/l	10		0.67
2,4-Dinitrophenol	ND		ug/l	20		6.6
4,6-Dinitro-o-cresol	ND		ug/l	10		1.8
Phenol	ND		ug/l	5.0		0.57
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0		0.48
2,4,5-Trichlorophenol	ND		ug/l	5.0		0.77
Carbazole	ND		ug/l	2.0		0.49
Atrazine	ND		ug/l	10		0.76
Benzaldehyde	ND		ug/l	5.0		0.53
Caprolactam	ND		ug/l	10		3.3
2,3,4,6-Tetrachlorophenol	ND		ug/l	5.0		0.84

		Acceptance
2-Fluorophenol Phenol-d6 Nitrobenzene-d5	%Recovery Qu	ualifier Criteria
2-Fluorophenol	73	21-120
Phenol-d6	61	10-120
Nitrobenzene-d5	86	23-120
2-Fluorobiphenyl	91	15-120
2,4,6-Tribromophenol	74	10-120
4-Terphenyl-d14	94	41-149

L1917771

Lab Number:

Project Name: 641 WEST AVE (NIAGARA COUNTY)

Project Number: Not Specified **Report Date:**

05/10/19

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D-SIM Analytical Date: 05/05/19 17:17

Analyst: DV

Extraction Method: EPA 3510C 05/04/19 01:09 Extraction Date:

Parameter	Result	Qualifier	Units	RL	MDL	
Semivolatile Organics by GC/M	S-SIM - Westbo	ough Lab	for sample	(s): 01-04	Batch: WG	31233539-1
Acenaphthene	ND		ug/l	0.10	0.01	
2-Chloronaphthalene	ND		ug/l	0.20	0.02	
Fluoranthene	ND		ug/l	0.10	0.02	
Hexachlorobutadiene	ND		ug/l	0.50	0.05	
Naphthalene	ND		ug/l	0.10	0.05	
Benzo(a)anthracene	ND		ug/l	0.10	0.02	
Benzo(a)pyrene	ND		ug/l	0.10	0.02	
Benzo(b)fluoranthene	ND		ug/l	0.10	0.01	
Benzo(k)fluoranthene	ND		ug/l	0.10	0.01	
Chrysene	ND		ug/l	0.10	0.01	
Acenaphthylene	ND		ug/l	0.10	0.01	
Anthracene	ND		ug/l	0.10	0.01	
Benzo(ghi)perylene	ND		ug/l	0.10	0.01	
Fluorene	ND		ug/l	0.10	0.01	
Phenanthrene	ND		ug/l	0.10	0.02	
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.01	
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10	0.01	
Pyrene	ND		ug/l	0.10	0.02	
2-Methylnaphthalene	ND		ug/l	0.10	0.02	
Pentachlorophenol	ND		ug/l	0.80	0.01	
Hexachlorobenzene	ND		ug/l	0.80	0.01	
Hexachloroethane	ND		ug/l	0.80	0.06	

Project Name: 641 WEST AVE (NIAGARA COUNTY) Lab Number: L1917771

Project Number: Not Specified Report Date: 05/10/19

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D-SIM Extraction Method: EPA 3510C
Analytical Date: 05/05/19 17:17 Extraction Date: 05/04/19 01:09

Analyst: DV

Parameter Result Qualifier Units RL MDL

Semivolatile Organics by GC/MS-SIM - Westborough Lab for sample(s): 01-04 Batch: WG1233539-1

Surrogate	%Recovery	<i>)</i> Qualifier	Acceptance Criteria	
2-Fluorophenol	71		21-120	
Phenol-d6	59		10-120	
Nitrobenzene-d5	94		23-120	
2-Fluorobiphenyl	95		15-120	
2,4,6-Tribromophenol	154	Q	10-120	
4-Terphenyl-d14	106		41-149	

Project Name: 641 WEST AVE (NIAGARA COUNTY)

Project Number: Not Specified

Lab Number: L1917771

Parameter	LCS %Recovery	Qual	LCSI %Recov		%Recovery Qual Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS - Westbor	ough Lab Associ	ated sample(s):	01-04	Batch:	WG1233537-2 WG12335	37-3	
Bis(2-chloroethyl)ether	91		84		40-140	8	30
3,3'-Dichlorobenzidine	71		66		40-140	7	30
2,4-Dinitrotoluene	96		89		48-143	8	30
2,6-Dinitrotoluene	96		93		40-140	3	30
4-Chlorophenyl phenyl ether	100		90		40-140	11	30
4-Bromophenyl phenyl ether	100		91		40-140	9	30
Bis(2-chloroisopropyl)ether	88		81		40-140	8	30
Bis(2-chloroethoxy)methane	97		91		40-140	6	30
Hexachlorocyclopentadiene	81		78		40-140	4	30
Isophorone	97		93		40-140	4	30
Nitrobenzene	94		88		40-140	7	30
NDPA/DPA	102		94		40-140	8	30
n-Nitrosodi-n-propylamine	102		94		29-132	8	30
Bis(2-ethylhexyl)phthalate	90		88		40-140	2	30
Butyl benzyl phthalate	95		96		40-140	1	30
Di-n-butylphthalate	95		92		40-140	3	30
Di-n-octylphthalate	96		94		40-140	2	30
Diethyl phthalate	105		100		40-140	5	30
Dimethyl phthalate	118		111		40-140	6	30
Biphenyl	102		95		40-140	7	30
4-Chloroaniline	49		49		40-140	0	30
2-Nitroaniline	97		92		52-143	5	30
3-Nitroaniline	68		63		25-145	8	30

Project Name: 641 WEST AVE (NIAGARA COUNTY)

Project Number: Not Specified

Lab Number: L1917771

arameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS - Westbord	ugh Lab Assoc	iated sample(s)	: 01-04 Batc	h: WG1233537-2 WG1233	537-3	
4-Nitroaniline	87		80	51-143	8	30
Dibenzofuran	101		89	40-140	13	30
1,2,4,5-Tetrachlorobenzene	96		90	2-134	6	30
Acetophenone	96		89	39-129	8	30
2,4,6-Trichlorophenol	97		92	30-130	5	30
p-Chloro-m-cresol	104	Q	96	23-97	8	30
2-Chlorophenol	96		87	27-123	10	30
2,4-Dichlorophenol	100		97	30-130	3	30
2,4-Dimethylphenol	86		76	30-130	12	30
2-Nitrophenol	97		92	30-130	5	30
4-Nitrophenol	86	Q	76	10-80	12	30
2,4-Dinitrophenol	100		95	20-130	5	30
4,6-Dinitro-o-cresol	99		93	20-164	6	30
Phenol	79		71	12-110	11	30
3-Methylphenol/4-Methylphenol	98		92	30-130	6	30
2,4,5-Trichlorophenol	100		97	30-130	3	30
Carbazole	104		98	55-144	6	30
Atrazine	142	Q	135	40-140	5	30
Benzaldehyde	90		84	40-140	7	30
Caprolactam	52		49	10-130	6	30
2,3,4,6-Tetrachlorophenol	100		92	40-140	8	30

Project Name: 641 WEST AVE (NIAGARA COUNTY)

Lab Number: L1917771

Project Number: Not Specified Report Date:

05/10/19

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-04 Batch: WG1233537-2 WG1233537-3

Surrogate	LCS %Recovery Qual	LCSD I %Recovery Qual	Acceptance Criteria
	•	•	
2-Fluorophenol	81	74	21-120
Phenol-d6	70	66	10-120
Nitrobenzene-d5	95	88	23-120
2-Fluorobiphenyl	96	90	15-120
2,4,6-Tribromophenol	93	87	10-120
4-Terphenyl-d14	97	90	41-149

Lab Control Sample Analysis Batch Quality Control

Project Name: 641 WEST AVE (NIAGARA COUNTY)

Project Number: Not Specified

Lab Number: L1917771

Report Date: 05/10/19

arameter	LCS %Recovery	Qual	LCSD %Recovery	%Recove Qual Limits	-	RPD Qual Limits
emivolatile Organics by GC/MS-SIM - Wes	stborough Lab As	ssociated samp	le(s): 01-04	Batch: WG1233539-2	WG1233539-3	
Acenaphthene	87		85	40-140	2	40
2-Chloronaphthalene	86		82	40-140	5	40
Fluoranthene	96		92	40-140	4	40
Hexachlorobutadiene	81		80	40-140	1	40
Naphthalene	82		80	40-140	2	40
Benzo(a)anthracene	94		92	40-140	2	40
Benzo(a)pyrene	91		90	40-140	1	40
Benzo(b)fluoranthene	79		81	40-140	3	40
Benzo(k)fluoranthene	104		103	40-140	1	40
Chrysene	96		97	40-140	1	40
Acenaphthylene	97		91	40-140	6	40
Anthracene	88		84	40-140	5	40
Benzo(ghi)perylene	75		78	40-140	4	40
Fluorene	98		95	40-140	3	40
Phenanthrene	77		77	40-140	0	40
Dibenzo(a,h)anthracene	81		83	40-140	2	40
Indeno(1,2,3-cd)pyrene	81		83	40-140	2	40
Pyrene	97		94	40-140	3	40
2-Methylnaphthalene	87		82	40-140	6	40
Pentachlorophenol	86		79	40-140	8	40
Hexachlorobenzene	87		86	40-140	1	40
Hexachloroethane	73		72	40-140	1	40

Lab Control Sample Analysis Batch Quality Control

Project Name: 641 WEST AVE (NIAGARA COUNTY)

Lab Number: L1917771

Project Number: Not Specified Report Date:

05/10/19

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 01-04 Batch: WG1233539-2 WG1233539-3

Surrenate	LCS	Ound	LCSD	Ougl	Acceptance Criteria	
Surrogate	%Recovery	Qual	%Recovery	Qual		
2-Fluorophenol	63		61		21-120	
Phenol-d6	57		53		10-120	
Nitrobenzene-d5	83		77		23-120	
2-Fluorobiphenyl	84		79		15-120	
2,4,6-Tribromophenol	135	Q	132	Q	10-120	
4-Terphenyl-d14	89		88		41-149	

Serial_No:05101918:38

Project Name: 641 WEST AVE (NIAGARA COUNTY)

Project Number: Not Specified

Lab Number: L1917771
Report Date: 05/10/19

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler Custody Seal

A Absent

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1917771-01A	Vial HCl preserved	Α	NA		3.7	Υ	Absent		NYTCL-8260-R2(14)
L1917771-01B	Vial HCl preserved	Α	NA		3.7	Υ	Absent		NYTCL-8260-R2(14)
L1917771-01C	Vial HCl preserved	Α	NA		3.7	Υ	Absent		NYTCL-8260-R2(14)
L1917771-01D	Amber 250ml unpreserved	Α	7	7	3.7	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
L1917771-01E	Amber 250ml unpreserved	Α	7	7	3.7	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
L1917771-02A	Vial HCl preserved	Α	NA		3.7	Υ	Absent		NYTCL-8260-R2(14)
L1917771-02B	Vial HCl preserved	Α	NA		3.7	Υ	Absent		NYTCL-8260-R2(14)
L1917771-02C	Vial HCl preserved	Α	NA		3.7	Υ	Absent		NYTCL-8260-R2(14)
L1917771-02D	Amber 250ml unpreserved	Α	7	7	3.7	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
L1917771-02E	Amber 250ml unpreserved	Α	7	7	3.7	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
L1917771-03A	Vial HCl preserved	Α	NA		3.7	Υ	Absent		NYTCL-8260-R2(14)
L1917771-03B	Vial HCl preserved	Α	NA		3.7	Υ	Absent		NYTCL-8260-R2(14)
L1917771-03C	Vial HCl preserved	Α	NA		3.7	Υ	Absent		NYTCL-8260-R2(14)
L1917771-03D	Amber 250ml unpreserved	Α	7	7	3.7	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
L1917771-03E	Amber 250ml unpreserved	Α	7	7	3.7	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
L1917771-04A	Vial HCl preserved	Α	NA		3.7	Υ	Absent		NYTCL-8260-R2(14)
L1917771-04B	Vial HCl preserved	Α	NA		3.7	Υ	Absent		NYTCL-8260-R2(14)
L1917771-04C	Vial HCl preserved	Α	NA		3.7	Υ	Absent		NYTCL-8260-R2(14)
L1917771-04D	Amber 250ml unpreserved	Α	7	7	3.7	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
L1917771-04E	Amber 250ml unpreserved	Α	7	7	3.7	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
L1917771-05A	Vial HCl preserved	Α	NA		3.7	Υ	Absent		ARCHIVE()
L1917771-05B	Vial HCl preserved	Α	NA		3.7	Υ	Absent		ARCHIVE()

Project Name: 641 WEST AVE (NIAGARA COUNTY) Lab Number: L1917771

Project Number: Not Specified Report Date: 05/10/19

GLOSSARY

Acronyms

EMPC

LOQ

MS

RPD

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

 Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA - Environmental Protection Agency.

 LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

 Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

Report Format: DU Report with 'J' Qualifiers

Project Name: 641 WEST AVE (NIAGARA COUNTY) Lab Number: L1917771

Project Number: Not Specified Report Date: 05/10/19

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- **NJ** Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.

Report Format: DU Report with 'J' Qualifiers

Serial_No:05101918:38

Project Name:641 WEST AVE (NIAGARA COUNTY)Lab Number:L1917771Project Number:Not SpecifiedReport Date:05/10/19

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Serial No:05101918:38

Alpha Analytical, Inc. Facility: Company-wide

Title: Certificate/Approval Program Summary

Revision 12 Published Date: 10/9/2018 4:58:19 PM Department: Quality Assurance

Page 1 of 1

ID No.:17873

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-

Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 6860: SCM: Perchlorate

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

Westborough, MA 01581 8 Walkup Dr. TEL: 508-898-9220 FAX: 508-896-9193	NEW YORK CHAIN OF CUSTODY Mansfield, MA 02048 320 Forbes Blvd TEL: 508-822-9300 FAX: 508-822-3288	Service Centers Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker V Tonawanda, NY 14150: 275 Co Project Information Project Name: 641	Vay oper Ave, Suite 10		Page / of		Deliv	Date Rec in Lab erables ASP-A EQuIS (1	50		ASP-B EQuIS (4 File)	ALPHA Job # L 19 17 17 11 Billing Information Same as Client Info
The same of the sa	W- 1737/4-1-		WAST A	M LOU	WORCE A	<i>oy.</i>		Other	1 1107	П,	Ladio (4 i lie)	
Client Information	0	Project #					_	latory Rec	uiromen	+	OF REAL PROPERTY.	Disposal Site Information
Client: CES COM		(Use Project name as Pr	THE RESERVE THE PERSON NAMED IN		_		Section 1	NY TOGS	direction		NY Part 375	
Address: 141 EL		Project Manager: CA ALPHAQuote #:	sy office			-	- =	AWQ Stand	dands	11 2120	NY CP-51	Please identify below location of applicable disposal facilities.
BUCEALD !	07.	- SAN AND STREET, WITH A SAN AND A S		March 15 Styl	STATE OF THE PARTY OF	100000	H	NY Restric			Other	Disposal Facility:
Phone:		Turn-Around Time Standard	- FVI	Due Date		11 (75	님	NY Unrestr		_	20101	□ NJ ☑ NY
Fax:	Q. (805.60)	Rush (only if pre approved		# of Days			님	NYC Sewe				Other:
Name and Address of the Owner, where the Party of the Owner, where the Party of the Owner, where the Owner, which is	The latest transfer and transfer and the latest transfer and the latest transfer and t		7 L.	# OI Days			ANA	YSIS	Distribution	jo.		Sample Filtration
These samples have be Other project specific							ANA	1313				0
Please specify Metal							9260	25.8				Done Lab to do Preservation Lab to do (Please Specify below)
			Coll	lection	T	Ta	00	0				(Flease Specify below)
ALPHA Lab ID (Lab Use Only)	Sa	ample ID	500,000		Sample Matrix	Sampler's Initials	>	SVO				Sample Specific Comments
	10000		Date	Time		1,000,000,000	-		+-	_		Sample Specific Comments
17771-01	MW-1		4/36/19	11.45	6w	RB	X	P	+		-	
-07	MW-2		4/30/19	12:50	GW	103	X	y	+			
-03	MM -3		4/30/19	11:00	OW	_	T	×	-			
704	Equipment 2	MIK	4/30/19	2:20	600	KB	λ	ю	-			
					-	-			+-	\rightarrow		
E TESTINE INC.			-		-	-	_	_	+	-	-	
					-	-					-	
			-			_			-			
			_		_	-					\rightarrow	
	Contribute Contr						_			-	\rightarrow	
Preservative Code: A = None B = HCl C = HNO ₃ D = H ₂ SO ₄	Container Code P = Plastic A = Amber Glass V = Vial G = Glass B = Bacteria Cup	Westboro: Certification I Mansfield: Certification I			5550	reservative	VB	A				Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not
E = NaOH F = MeOH G = NaHSO ₄ H = Na ₂ S ₂ O ₃ T = Zn Ad/NaOH Other	C = Cube O = Other E = Encore D = BOD Bottle	Relinquished Review	By:	4/30/19	Time 21570 21670	fl	Recei	ved By:			Date/Time	M DAS REAU AND AGREES

APPENDIX D Laboratory Analytical Reports - Air/Sub-Slab

ANALYTICAL REPORT

Lab Number: L1916400

Client: C&S Companies

141 Elm Street, Suite 100

Buffalo, NY 14203

ATTN: Cody Martin
Phone: (716) 847-1630
Project Name: 641 WEST AVE.

Project Number: Q47005001

Report Date: 04/25/19

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA030), NH NELAP (2062), CT (PH-0141), DoD (L2474), FL (E87814), IL (200081), LA (85084), ME (MA00030), MD (350), NJ (MA015), NY (11627), NC (685), OH (CL106), PA (68-02089), RI (LAO00299), TX (T104704419), VT (VT-0015), VA (460194), WA (C954), US Army Corps of Engineers, USDA (Permit #P330-17-00150), USFWS (Permit #206964).

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com

Project Name: 641 WEST AVE. **Project Number:** Q47005001

Lab Number: Report Date: L1916400

oort Date: 04/25/19

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1916400-01	SS-01	SOIL_VAPOR	Not Specified	04/19/19 09:47	04/19/19
L1916400-02	SS-02	SOIL_VAPOR	Not Specified	04/19/19 10:12	04/19/19
L1916400-03	IA-01	AIR	Not Specified	04/19/19 10:00	04/19/19
L1916400-04	DUP	AIR	Not Specified	04/19/19 10:00	04/19/19
L1916400-05	IA-02	AIR	Not Specified	04/19/19 10:18	04/19/19
L1916400-06	OA-01	AIR	Not Specified	04/19/19 10:30	04/19/19

Project Name:641 WEST AVE.Lab Number:L1916400Project Number:Q47005001Report Date:04/25/19

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.

Serial_No:04251916:08

 Project Name:
 641 WEST AVE.
 Lab Number:
 L1916400

 Project Number:
 Q47005001
 Report Date:
 04/25/19

Case Narrative (continued)

Volatile Organics in Air

Canisters were released from the laboratory on April 8, 2019. The canister certification results are provided as an addendum.

L1916400-03, -04, and -05: The presence of Acetone could not be determined in these samples due to a non-target compound interfering with the identification and quantification of this compound.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Jusen & Med Susan O' Neil

Title: Technical Director/Representative Date: 04/25/19

AIR

Project Name: 641 WEST AVE. Project Number:

Lab Number:

L1916400

Report Date: 04/25/19

SAMPLE RESULTS

Lab ID: L1916400-01

Client ID: SS-01

Sample Location:

Date Collected:

04/19/19 09:47

Date Received: Field Prep:

04/19/19 Not Specified

Sample Depth:

Matrix: Anaytical Method: Soil_Vapor 48,TO-15

Q47005001

Analytical Date:

04/23/19 21:26

Analyst: RY

		ppbV				ug/m3			
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor	
Volatile Organics in Air - Man	sfield Lab								
Dichlorodifluoromethane	0.303	0.200		1.50	0.989			1	
Chloromethane	0.209	0.200		0.432	0.413			1	
Freon-114	ND	0.200		ND	1.40			1	
Vinyl chloride	ND	0.200		ND	0.511			1	
1,3-Butadiene	ND	0.200		ND	0.442			1	
Bromomethane	ND	0.200		ND	0.777			1	
Chloroethane	ND	0.200		ND	0.528			1	
Ethanol	101	5.00		190	9.42			1	
Vinyl bromide	ND	0.200		ND	0.874			1	
Acetone	105	1.00		249	2.38			1	
Trichlorofluoromethane	32.1	0.200		180	1.12			1	
Isopropanol	19.6	0.500		48.2	1.23			1	
1,1-Dichloroethene	ND	0.200		ND	0.793			1	
Tertiary butyl Alcohol	1.04	0.500		3.15	1.52			1	
Methylene chloride	ND	0.500		ND	1.74			1	
3-Chloropropene	ND	0.200		ND	0.626			1	
Carbon disulfide	1.75	0.200		5.45	0.623			1	
Freon-113	8.43	0.200		64.6	1.53			1	
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1	
1,1-Dichloroethane	ND	0.200		ND	0.809			1	
Methyl tert butyl ether	ND	0.200		ND	0.721			1	
2-Butanone	27.3	0.500		80.5	1.47			1	
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1	

Project Name: 641 WEST AVE. Project Number:

Q47005001

Lab Number:

L1916400

Report Date: 04/25/19

SAMPLE RESULTS

Lab ID: L1916400-01

Client ID: SS-01

Sample Location:

Date Collected: 04/19/19 09:47

Date Received: 04/19/19 Field Prep: Not Specified

		ppbV				ug/m3			
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor	
Volatile Organics in Air - Mans	sfield Lab								
Ethyl Acetate	ND	0.500		ND	1.80			1	
Chloroform	ND	0.200		ND	0.977			1	
Tetrahydrofuran	4.21	0.500		12.4	1.47			1	
1,2-Dichloroethane	ND	0.200		ND	0.809			1	
n-Hexane	10.4	0.200		36.7	0.705			1	
1,1,1-Trichloroethane	20.2	0.200		110	1.09			1	
Benzene	2.15	0.200		6.87	0.639			1	
Carbon tetrachloride	ND	0.200		ND	1.26			1	
Cyclohexane	3.93	0.200		13.5	0.688			1	
1,2-Dichloropropane	ND	0.200		ND	0.924			1	
Bromodichloromethane	ND	0.200		ND	1.34			1	
1,4-Dioxane	ND	0.200		ND	0.721			1	
Trichloroethene	ND	0.200		ND	1.07			1	
2,2,4-Trimethylpentane	7.70	0.200		36.0	0.934			1	
Heptane	6.10	0.200		25.0	0.820			1	
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1	
4-Methyl-2-pentanone	2.39	0.500		9.79	2.05			1	
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1	
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1	
Toluene	38.6	0.200		145	0.754			1	
2-Hexanone	2.89	0.200		11.8	0.820			1	
Dibromochloromethane	ND	0.200		ND	1.70			1	
1,2-Dibromoethane	ND	0.200		ND	1.54			1	
Tetrachloroethene	1.35	0.200		9.15	1.36			1	
Chlorobenzene	ND	0.200		ND	0.921			1	
Ethylbenzene	1.38	0.200		5.99	0.869			1	

Project Number: Q47005001 Lab Number:

L1916400

Report Date:

04/25/19

SAMPLE RESULTS

Lab ID:

L1916400-01

Client ID:

SS-01

Sample Location:

Date Collected:

04/19/19 09:47

Date Received: Field Prep:

04/19/19 Not Specified

Sample Depth:

ppbV ug/m3 Dilution **Factor** Results RL MDL Qualifier **Parameter** Results RLMDL Volatile Organics in Air - Mansfield Lab p/m-Xylene 4.60 20.0 1 0.400 1.74 Bromoform ND 0.200 1 ND 2.07 Styrene ND 0.200 ND 0.852 1 1,1,2,2-Tetrachloroethane ND 0.200 ND 1.37 1 ---o-Xylene 1.91 0.200 8.30 1 0.869 4-Ethyltoluene ND 0.200 ND 0.983 1 1,3,5-Trimethylbenzene 0.200 0.200 0.983 0.983 1 __ __ 1,2,4-Trimethylbenzene 0.436 0.200 2.14 0.983 1 Benzyl chloride 0.200 1 ND ND 1.04 1,3-Dichlorobenzene ND 0.200 ND 1 --1.20 --1,4-Dichlorobenzene ND 0.200 ND 1.20 1 1,2-Dichlorobenzene ND 0.200 ND 1.20 1 1,2,4-Trichlorobenzene ND 0.200 ND 1.48 1 Hexachlorobutadiene ND 0.200 ND 1 2.13

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	88		60-140
Bromochloromethane	89		60-140
chlorobenzene-d5	92		60-140

Q47005001

Lab Number: L1916400

Report Date: 04/25/19

SAMPLE RESULTS

Lab ID: L1916400-02

Client ID: SS-02

Sample Location:

Project Number:

Date Collected: 04/19/19 10:12

Date Received: 04/19/19
Field Prep: Not Specified

Sample Depth:

Matrix: Soil_Vapor Anaytical Method: 48,TO-15 Analytical Date: 04/23/19 21:59

Analyst: RY

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
Dichlorodifluoromethane	0.313	0.200		1.55	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	14.2	5.00		26.8	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	53.8	1.00		128	2.38			1
Trichlorofluoromethane	0.241	0.200		1.35	1.12			1
Isopropanol	1.58	0.500		3.88	1.23			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
Tertiary butyl Alcohol	3.04	0.500		9.22	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	0.892	0.200		2.78	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	45.9	0.500		135	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1

Lab Number:

L1916400

Project Number: Q47005001 Report Date: 04/25/19

SAMPLE RESULTS

Lab ID:

L1916400-02

Client ID:

SS-02

Sample Location:

Date Collected:

04/19/19 10:12

Date Received:

04/19/19

Field Prep:

Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Man	sfield Lab							
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	0.280	0.200		1.37	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	7.48	0.200		26.4	0.705			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
Benzene	1.96	0.200		6.26	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	2.89	0.200		9.95	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	0.373	0.200		2.00	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	6.68	0.200		27.4	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	12.7	0.200		47.9	0.754			1
2-Hexanone	4.89	0.200		20.0	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Tetrachloroethene	1.60	0.200		10.8	1.36			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	0.470	0.200		2.04	0.869			1

L1916400-02

Lab Number:

L1916400

Project Number: Q47005001

Report Date: 04/25/19

SAMPLE RESULTS

Lab ID:

Date Collected:

04/19/19 10:12

Client ID: SS-02

Date Received: Field Prep:

04/19/19 Not Specified

Sample Depth:

Sample Location:

		ppbV				ug/m3			
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor	
Volatile Organics in Air - Mans	sfield Lab								
p/m-Xylene	1.92	0.400		8.34	1.74			1	
Bromoform	ND	0.200		ND	2.07			1	
Styrene	ND	0.200		ND	0.852			1	
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1	
o-Xylene	0.586	0.200		2.55	0.869			1	
4-Ethyltoluene	ND	0.200		ND	0.983			1	
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1	
1,2,4-Trimethylbenzene	0.347	0.200		1.71	0.983			1	
Benzyl chloride	ND	0.200		ND	1.04			1	
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1	
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1	
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1	
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1	
Hexachlorobutadiene	ND	0.200		ND	2.13			1	

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	85		60-140
Bromochloromethane	87		60-140
chlorobenzene-d5	86		60-140

Q47005001

Lab Number:

L1916400

Report Date:

04/25/19

SAMPLE RESULTS

Lab ID: L1916400-03

Client ID: IA-01

Sample Location:

Project Number:

Date Collected: 04/19/19 10:00

Date Received: 04/19/19

Field Prep: Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15 Analytical Date: 04/23/19 20:22

Analyst: RY

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
Dichlorodifluoromethane	0.261	0.200		1.29	0.989			1
Chloromethane	0.694	0.200		1.43	0.413			1
Freon-114	ND	0.200		ND	1.40			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	168	5.00		317	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	0.297	0.200		1.67	1.12			1
Isopropanol	ND	0.500		ND	1.23			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	1.57	0.500		4.63	1.47			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1

Project Name: 641 WEST AVE. Project Number:

Q47005001

Lab Number:

L1916400

Report Date:

04/25/19

SAMPLE RESULTS

Lab ID: L1916400-03

Client ID: IA-01

Sample Location:

Date Collected: 04/19/19 10:00

Date Received: 04/19/19

Field Prep: Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfi	eld Lab							
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	45.9	0.200		162	0.705			1
Benzene	8.52	0.200		27.2	0.639			1
Cyclohexane	3.74	0.200		12.9	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
2,2,4-Trimethylpentane	27.3	0.200		128	0.934			1
Heptane	6.60	0.200		27.0	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	0.543	0.500		2.23	2.05			1
rans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	36.2	0.200		136	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	4.69	0.200		20.4	0.869			1
o/m-Xylene	18.1	0.400		78.6	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
p-Xylene	7.45	0.200		32.4	0.869			1
I-Ethyltoluene	1.22	0.200		6.00	0.983			1
1,3,5-Trimethylbenzene	1.32	0.200		6.49	0.983			1

Project Name: 641 WEST AVE. Lab Number: L1916400

Project Number: Q47005001 **Report Date:** 04/25/19

SAMPLE RESULTS

Lab ID: L1916400-03

Client ID: IA-01

Sample Location:

Date Collected: 04/19/19 10:00

Date Received: 04/19/19

Field Prop: Not Specified

Field Prep: Not Specified

оатріс верш.		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfi	eld Lab							
1,2,4-Trimethylbenzene	5.38	0.200		26.4	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	87		60-140
Bromochloromethane	89		60-140
chlorobenzene-d5	89		60-140

L1916400

Project Name: 641 WEST AVE.

Q47005001 Report Date:

Report Date: 04/25/19

Lab Number:

SAMPLE RESULTS

Lab ID: L1916400-03

Client ID: IA-01

Sample Location:

Project Number:

Date Collected: 04/19/19 10:00

Date Received: 04/19/19
Field Prep: Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15-SIM Analytical Date: 04/23/19 20:22

Analyst: RY

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - Ma	nsfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	0.063	0.020		0.396	0.126			1
Trichloroethene	ND	0.020		ND	0.107			1
Tetrachloroethene	0.087	0.020		0.590	0.136			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	88		60-140
bromochloromethane	91		60-140
chlorobenzene-d5	89		60-140

Q47005001

Lab Number:

L1916400

Report Date:

04/25/19

SAMPLE RESULTS

Lab ID: L1916400-04

Client ID: DUP

Sample Location:

Project Number:

Date Collected:

04/19/19 10:00

Date Received: Field Prep:

04/19/19 Not Specified

Sample Depth:

Matrix:

Air

Anaytical Method: Analytical Date: 48,TO-15 04/23/19 20:54

Analyst:

RY

	<u> </u>	ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
Dichlorodifluoromethane	0.269	0.200		1.33	0.989			1
Chloromethane	0.754	0.200		1.56	0.413			1
Freon-114	ND	0.200		ND	1.40			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	172	5.00		324	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	0.290	0.200		1.63	1.12			1
Isopropanol	ND	0.500		ND	1.23			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	1.65	0.500		4.87	1.47			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	0.508	0.500		1.50	1.47			1

Q47005001

Lab Number:

L1916400

Report Date: 04/25/19

SAMPLE RESULTS

Lab ID: L1916400-04

Client ID: DUP

Sample Location:

Project Number:

Date Collected: 04/19/19 10:00

Date Received: 04/19/19

Field Prep: Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	sfield Lab							
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	48.6	0.200		171	0.705			1
Benzene	8.86	0.200		28.3	0.639			1
Cyclohexane	4.18	0.200		14.4	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
2,2,4-Trimethylpentane	28.2	0.200		132	0.934			1
Heptane	6.86	0.200		28.1	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1-Methyl-2-pentanone	0.555	0.500		2.27	2.05			1
rans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	35.4	0.200		133	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	4.57	0.200		19.9	0.869			1
o/m-Xylene	17.6	0.400		76.4	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	7.24	0.200		31.4	0.869			1
4-Ethyltoluene	1.18	0.200		5.80	0.983			1
1,3,5-Trimethylbenzene	1.26	0.200		6.19	0.983			1

Q47005001

Lab Number:

L1916400

Report Date:

04/25/19

SAMPLE RESULTS

Lab ID:

Project Number:

L1916400-04

Client ID:

DUP

Sample Location:

Date Collected: Date Received: 04/19/19 10:00

04/19/19

Field Prep:

Not Specified

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
1,2,4-Trimethylbenzene	5.17	0.200		25.4	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	87		60-140
Bromochloromethane	89		60-140
chlorobenzene-d5	90		60-140

Project Number: Q47005001

Lab Number:

L1916400

Report Date:

04/25/19

SAMPLE RESULTS

Lab ID: L1916400-04

Client ID:

DUP

Sample Location:

Date Collected:

04/19/19 10:00

Date Received:

04/19/19

Field Prep:

Not Specified

Sample Depth:

Matrix:

Air

Anaytical Method: Analytical Date: 48,TO-15-SIM 04/23/19 20:54

Analyst:

RY

	ppbV			ug/m3			Dilution
Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
ansfield Lab							
ND	0.020		ND	0.051			1
ND	0.020		ND	0.079			1
ND	0.020		ND	0.079			1
ND	0.020		ND	0.109			1
0.063	0.020		0.396	0.126			1
ND	0.020		ND	0.107			1
0.088	0.020		0.597	0.136			1
	ND N	Results RL ansfield Lab ND 0.020 ND 0.020 ND 0.020 ND 0.020 ND 0.020 ND 0.020 ND 0.020 ND 0.020 0.020 ND 0.020	Results RL MDL ansfield Lab ND 0.020 ND 0.020 ND 0.020 ND 0.020 0.063 0.020 ND 0.020	Results RL MDL Results Annsfield Lab ND 0.020 ND ND 0.020 ND ND 0.020 ND ND 0.020 ND 0.063 0.020 ND ND 0.020 ND	Results RL MDL Results RL ansfield Lab ND 0.020 ND 0.051 ND 0.020 ND 0.079 ND 0.020 ND 0.109 ND 0.020 ND 0.126 ND 0.020 ND 0.107	Results RL MDL Results RL MDL ansfield Lab ND 0.020 ND 0.051 ND 0.020 ND 0.079 ND 0.020 ND 0.079 ND 0.020 ND 0.109 0.063 0.020 0.396 0.126 ND 0.020 ND 0.107	Results RL MDL Results RL MDL Qualifier Annsfield Lab ND 0.020 ND 0.051 ND 0.020 ND 0.079 ND 0.020 ND 0.079 ND 0.020 ND 0.109 0.063 0.020 ND 0.126 ND 0.020 ND 0.107

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	89		60-140
bromochloromethane	92		60-140
chlorobenzene-d5	90		60-140

Q47005001

Lab Number:

L1916400

Report Date:

04/25/19

SAMPLE RESULTS

Lab ID: L1916400-05

Client ID: IA-02

Sample Location:

Project Number:

Date Collected:

04/19/19 10:18

Date Received:

04/19/19

Field Prep:

Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 4
Analytical Date: 0

48,TO-15 04/23/19 19:17

Analyst:

RY

Parameter Results RL MDL Results RL Volatile Organics in Air - Mansfield Lab Use of the parameter of the	3 2 7	Qualifier	1 1 1 1 1 1
Dichlorodifluoromethane 0.328 0.200 1.62 0.988 Chloromethane 0.704 0.200 1.45 0.413 Freon-114 ND 0.200 ND 1.40 1,3-Butadiene ND 0.200 ND 0.442 Bromomethane ND 0.200 ND 0.777 Chloroethane ND 0.200 ND 0.528 Ethanol 45.2 5.00 85.2 9.42 Vinyl bromide ND 0.200 ND 0.874 Acetone ND 1.00 ND 2.38 Trichlorofluoromethane 0.326 0.200 ND 1.23 Tertiary butyl Alcohol ND 0.500 ND 1.52	3 2 7		1
Chloromethane 0.704 0.200 1.45 0.413 Freon-114 ND 0.200 ND 1.40 1,3-Butadiene ND 0.200 ND 0.442 Bromomethane ND 0.200 ND 0.777 Chloroethane ND 0.200 ND 0.528 Ethanol 45.2 5.00 85.2 9.42 Vinyl bromide ND 0.200 ND 0.874 Acetone ND 1.00 ND 2.38 Trichlorofluoromethane 0.326 0.200 1.83 1.12 Isopropanol ND 0.500 ND 1.52 Tertiary butyl Alcohol ND 0.500 ND 1.52	3 2 7		1
Freon-114 ND 0.200 ND 1.40 1,3-Butadiene ND 0.200 ND 0.442 Bromomethane ND 0.200 ND 0.777 Chloroethane ND 0.200 ND 0.528 Ethanol 45.2 5.00 85.2 9.42 Vinyl bromide ND 0.200 ND 0.874 Acetone ND 1.00 ND 2.38 Trichlorofluoromethane 0.326 0.200 ND 1.23 Isopropanol ND 0.500 ND 1.52	 2 7		1
1,3-Butadiene ND 0.200 ND 0.442 Bromomethane ND 0.200 ND 0.777 Chloroethane ND 0.200 ND 0.528 Ethanol 45.2 5.00 85.2 9.42 Vinyl bromide ND 0.200 ND 0.874 Acetone ND 1.00 ND 2.38 Trichlorofluoromethane 0.326 0.200 ND 1.23 Isopropanol ND 0.500 ND 1.52 Tertiary butyl Alcohol ND 0.500 ND 1.52	2		
Bromomethane ND 0.200 ND 0.777 Chloroethane ND 0.200 ND 0.528 Ethanol 45.2 5.00 85.2 9.42 Vinyl bromide ND 0.200 ND 0.874 Acetone ND 1.00 ND 2.38 Trichlorofluoromethane 0.326 0.200 1.83 1.12 Isopropanol ND 0.500 ND 1.52 Tertiary butyl Alcohol ND 0.500 ND 1.52	7		1
Chloroethane ND 0.200 ND 0.528 Ethanol 45.2 5.00 85.2 9.42 Vinyl bromide ND 0.200 ND 0.874 Acetone ND 1.00 ND 2.38 Trichlorofluoromethane 0.326 0.200 1.83 1.12 Isopropanol ND 0.500 ND 1.52 Tertiary butyl Alcohol ND 0.500 ND 1.52			
Ethanol 45.2 5.00 85.2 9.42 Vinyl bromide ND 0.200 ND 0.874 Acetone ND 1.00 ND 2.38 Trichlorofluoromethane 0.326 0.200 1.83 1.12 Isopropanol ND 0.500 ND 1.23 Tertiary butyl Alcohol ND 0.500 ND 1.52			1
Vinyl bromide ND 0.200 ND 0.874 Acetone ND 1.00 ND 2.38 Trichlorofluoromethane 0.326 0.200 1.83 1.12 Isopropanol ND 0.500 ND 1.23 Tertiary butyl Alcohol ND 0.500 ND 1.52	3		1
Acetone ND 1.00 ND 2.38 Trichlorofluoromethane 0.326 0.200 1.83 1.12 Isopropanol ND 0.500 ND 1.23 Tertiary butyl Alcohol ND 0.500 ND 1.52			1
Trichlorofluoromethane 0.326 0.200 1.83 1.12 Isopropanol ND 0.500 ND 1.23 Tertiary butyl Alcohol ND 0.500 ND 1.52	1		1
Sopropanol ND 0.500 ND 1.23			1
Tertiary butyl Alcohol ND 0.500 ND 1.52			1
			1
Methylene chloride			1
Methylene chloride ND 0.500 ND 1.74			1
3-Chloropropene ND 0.200 ND 0.626	S		1
Carbon disulfide 0.408 0.200 1.27 0.623	3		1
Freon-113 ND 0.200 ND 1.53			1
trans-1,2-Dichloroethene ND 0.200 ND 0.793	3		1
1,1-Dichloroethane ND 0.200 ND 0.809)		1
Methyl tert butyl ether ND 0.200 ND 0.72	l		1
2-Butanone 1.65 0.500 4.87 1.47			1
Ethyl Acetate ND 0.500 ND 1.80			1
Chloroform ND 0.200 ND 0.977	7		1
Tetrahydrofuran ND 0.500 ND 1.47			1

Project Name: 641 WEST AVE. Project Number:

Q47005001

Lab Number:

L1916400

Report Date:

04/25/19

SAMPLE RESULTS

Lab ID: L1916400-05

Client ID: IA-02

Sample Location:

Date Collected: 04/19/19 10:18

Date Received: 04/19/19

Field Prep: Not Specified

Sample Depth:		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	field Lab							
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	14.6	0.200		51.5	0.705			1
Benzene	3.22	0.200		10.3	0.639			1
Cyclohexane	1.36	0.200		4.68	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
2,2,4-Trimethylpentane	9.51	0.200		44.4	0.934			1
Heptane	2.46	0.200		10.1	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
rans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Γoluene	17.9	0.200		67.5	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	2.02	0.200		8.77	0.869			1
o/m-Xylene	7.72	0.400		33.5	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	3.03	0.200		13.2	0.869			1
4-Ethyltoluene	0.459	0.200		2.26	0.983			1
1,3,5-Trimethylbenzene	0.477	0.200		2.35	0.983			1

Q47005001

Lab Number:

L1916400

Project Number:

Report Date: 04/25/19

SAMPLE RESULTS

Lab ID:

L1916400-05

Client ID:

IA-02

Sample Location:

Date Collected:

04/19/19 10:18

Date Received: Field Prep:

04/19/19 Not Specified

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Man	sfield Lab							
1,2,4-Trimethylbenzene	1.92	0.200		9.44	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	86		60-140
Bromochloromethane	88		60-140
chlorobenzene-d5	87		60-140

Project Name: 641 WEST AVE. Lab Number: L1916400

Project Number: Q47005001 **Report Date:** 04/25/19

SAMPLE RESULTS

Lab ID: Date Collected: 04/19/19 10:18

Client ID: IA-02 Date Received: 04/19/19
Sample Location: Field Prep: Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15-SIM Analytical Date: 04/23/19 19:17

Analyst: RY

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	Mansfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	0.066	0.020		0.415	0.126			1
Trichloroethene	ND	0.020		ND	0.107			1
Tetrachloroethene	0.065	0.020		0.441	0.136			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	88		60-140
bromochloromethane	90		60-140
chlorobenzene-d5	87		60-140

Q47005001

Lab Number:

L1916400

Report Date:

04/25/19

SAMPLE RESULTS

Lab ID: L1916400-06

Client ID: OA-01

Sample Location:

Project Number:

Date Collected:

04/19/19 10:30

Date Received:

04/19/19

Field Prep:

Not Specified

Sample Depth:

Matrix: Air

Anaytical Method: 48,TO-15 Analytical Date: 04/23/19 19:49

Analyst: RY

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
Dichlorodifluoromethane	0.373	0.200		1.84	0.989			1
Chloromethane	0.576	0.200		1.19	0.413			1
Freon-114	ND	0.200		ND	1.40			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	5.74	5.00		10.8	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	4.21	1.00		10.0	2.38			1
Trichlorofluoromethane	0.205	0.200		1.15	1.12			1
Isopropanol	ND	0.500		ND	1.23			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1

Q47005001

Lab Number:

L1916400

Report Date:

04/25/19

SAMPLE RESULTS

Lab ID: L1916400-06

Client ID: OA-01

Sample Location:

Project Number:

Date Collected: 04/19/19 10:30

Date Received: 04/19/19

Field Prep: Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	eld Lab							
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Benzene	ND	0.200		ND	0.639			1
Cyclohexane	ND	0.200		ND	0.688			1
,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
-Methyl-2-pentanone	ND	0.500		ND	2.05			1
rans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
,1,2-Trichloroethane	ND	0.200		ND	1.09			1
oluene	0.264	0.200		0.995	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
,2-Dibromoethane	ND	0.200		ND	1.54			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
n/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
-Ethyltoluene	ND	0.200		ND	0.983			1
,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1

Q47005001

Lab Number:

L1916400

Report Date:

04/25/19

SAMPLE RESULTS

Lab ID:

Project Number:

L1916400-06

Client ID:

OA-01

Sample Location:

Date Collected:

04/19/19 10:30

Date Received: Field Prep:

04/19/19

Not Specified

Campio Boptii.		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	field Lab							
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	85		60-140
Bromochloromethane	87		60-140
chlorobenzene-d5	87		60-140

Q47005001

Lab Number:

L1916400

Report Date:

04/25/19

SAMPLE RESULTS

Lab ID: L1916400-06

Client ID: OA-01

Sample Location:

Project Number:

Date Collected:

04/19/19 10:30

Date Received:

04/19/19

Field Prep:

Not Specified

Sample Depth:

Matrix:

Air

Anaytical Method: Analytical Date:

48,TO-15-SIM 04/23/19 19:49

Analyst:

RY

ppbV			ug/m3				Dilution
Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
nsfield Lab							
ND	0.020		ND	0.051			1
ND	0.020		ND	0.079			1
ND	0.020		ND	0.079			1
ND	0.020		ND	0.109			1
0.064	0.020		0.403	0.126			1
ND	0.020		ND	0.107			1
ND	0.020		ND	0.136			1
	ND 0.064	Results RL Insfield Lab ND ND 0.020 ND 0.020	Results RL MDL Insfield Lab ND 0.020 ND 0.020 ND 0.020 ND 0.020 ND 0.020 ND 0.020 ND 0.020	Results RL MDL Results ND 0.020 ND ND 0.020 ND ND 0.020 ND ND 0.020 ND 0.064 0.020 0.403 ND 0.020 ND	Results RL MDL Results RL Insfield Lab ND 0.020 ND 0.051 ND 0.020 ND 0.079 ND 0.020 ND 0.109 ND 0.020 ND 0.126 ND 0.020 ND 0.107	Results RL MDL Results RL MDL Insfield Lab ND 0.020 ND 0.051 ND 0.020 ND 0.079 ND 0.020 ND 0.109 ND 0.064 0.020 ND 0.126 ND 0.020 ND 0.107	Results RL MDL Results RL MDL Qualifier Insfield Lab ND 0.051 ND 0.051 ND 0.020 ND 0.079 ND 0.020 ND 0.079 ND 0.020 ND 0.109 0.064 0.020 0.403 0.126 ND 0.020 ND 0.107

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	87		60-140
bromochloromethane	90		60-140
chlorobenzene-d5	88		60-140

 Project Name:
 641 WEST AVE.
 Lab Number:
 L1916400

 Project Number:
 Q47005001
 Report Date:
 04/25/19

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 04/23/19 14:53

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	field Lab for samp	ole(s): 01-	-06 Batch:	: WG1229411-4				
Propylene	ND	0.500		ND	0.861			1
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	5.00		ND	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	ND	0.500		ND	1.23			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
Vinyl acetate	ND	1.00		ND	3.52			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1

 Project Name:
 641 WEST AVE.
 Lab Number:
 L1916400

 Project Number:
 Q47005001
 Report Date:
 04/25/19

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 04/23/19 14:53

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	sfield Lab for samp	ole(s): 01-	-06 Batch	: WG12294	11-4			
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Tetrachloroethene	ND	0.200		ND	1.36			1
Chlorobenzene	ND	0.200		ND	0.921			1

 Project Name:
 641 WEST AVE.
 Lab Number:
 L1916400

 Project Number:
 Q47005001
 Report Date:
 04/25/19

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 04/23/19 14:53

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	eld Lab for samp	ole(s): 01-	·06 Batch	: WG12294	111-4			
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Project Name: 641 WEST AVE.

Lab Number: L1916400

Project Number: 0.47005004

Project Number: Q47005001 **Report Date:** 04/25/19

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15-SIM Analytical Date: 04/23/19 15:25

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results RL MD		MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	Mansfield Lab f	or sample	e(s): 03-0	6 Batch: W	G122942	8-4		
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	ND	0.020		ND	0.126			1
Trichloroethene	ND	0.020		ND	0.107			1
Tetrachloroethene	ND	0.020		ND	0.136			1

Project Name: 641 WEST AVE.

Project Number: Q47005001

Lab Number: L1916400

Report Date: 04/25/19

Parameter	LCS %Recovery	Qual		LCSD Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics in Air - Mansfield Lab A	associated sample(s):	01-06	Batch:	WG12294	11-3				
Propylene	125			-		70-130	-		
Dichlorodifluoromethane	87			-		70-130	-		
Chloromethane	103			-		70-130	-		
Freon-114	101			-		70-130	-		
Vinyl chloride	102			-		70-130	-		
1,3-Butadiene	118			-		70-130	-		
Bromomethane	92			-		70-130	-		
Chloroethane	110			-		70-130	-		
Ethanol	84			-		40-160	-		
Vinyl bromide	93			-		70-130	-		
Acetone	83			-		40-160	-		
Trichlorofluoromethane	97			-		70-130	-		
Isopropanol	89			-		40-160	-		
1,1-Dichloroethene	100			-		70-130	-		
Tertiary butyl Alcohol	93			-		70-130	-		
Methylene chloride	96			-		70-130	-		
3-Chloropropene	101			-		70-130	-		
Carbon disulfide	88			-		70-130	-		
Freon-113	92			-		70-130	-		
trans-1,2-Dichloroethene	90			-		70-130	-		
1,1-Dichloroethane	96			-		70-130	-		
Methyl tert butyl ether	102			-		70-130	-		
Vinyl acetate	108			-		70-130	-		

Project Name: 641 WEST AVE.

Project Number: Q47005001

Lab Number: L1916400

Report Date: 04/25/19

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics in Air - Mansfield Lab Asso	ociated sample(s)	: 01-06	Batch: WG122941	1-3				
2-Butanone	106		-		70-130	-		
cis-1,2-Dichloroethene	107		-		70-130	-		
Ethyl Acetate	106		-		70-130	-		
Chloroform	99		-		70-130	-		
Tetrahydrofuran	114		-		70-130	-		
1,2-Dichloroethane	100		-		70-130	-		
n-Hexane	109		-		70-130	-		
1,1,1-Trichloroethane	102		-		70-130	-		
Benzene	104		-		70-130	-		
Carbon tetrachloride	97		-		70-130	-		
Cyclohexane	111		-		70-130	-		
1,2-Dichloropropane	111		-		70-130	-		
Bromodichloromethane	101		-		70-130	-		
1,4-Dioxane	107		-		70-130	-		
Trichloroethene	100		-		70-130	-		
2,2,4-Trimethylpentane	111		-		70-130	-		
Heptane	109		-		70-130	-		
cis-1,3-Dichloropropene	112		-		70-130	-		
4-Methyl-2-pentanone	114		-		70-130	-		
trans-1,3-Dichloropropene	94		-		70-130	-		
1,1,2-Trichloroethane	105		-		70-130	-		
Toluene	98		-		70-130	-		
2-Hexanone	110		-		70-130	-		
	110				, , , , , ,			

Project Name: 641 WEST AVE.

Project Number: Q47005001

Lab Number: L1916400

Report Date: 04/25/19

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
/olatile Organics in Air - Mansfield Lab	Associated sample(s):	01-06	Batch: WG122941	1-3				
Dibromochloromethane	92		-		70-130	-		
1,2-Dibromoethane	96		-		70-130	-		
Tetrachloroethene	92		-		70-130	-		
Chlorobenzene	98		-		70-130	-		
Ethylbenzene	99		-		70-130	-		
p/m-Xylene	100		-		70-130	-		
Bromoform	88		-		70-130	-		
Styrene	100		-		70-130	-		
1,1,2,2-Tetrachloroethane	103		-		70-130	-		
o-Xylene	102		-		70-130	-		
4-Ethyltoluene	99		-		70-130	-		
1,3,5-Trimethylbenzene	100		-		70-130	-		
1,2,4-Trimethylbenzene	105		-		70-130	-		
Benzyl chloride	99		-		70-130	-		
1,3-Dichlorobenzene	97		-		70-130	-		
1,4-Dichlorobenzene	98		-		70-130	-		
1,2-Dichlorobenzene	98		-		70-130	-		
1,2,4-Trichlorobenzene	109		-		70-130	-		
Hexachlorobutadiene	102		-		70-130	-		

Project Name: 641 WEST AVE. Lab Number:

L1916400

Project Number: Q47005001

Report Date: 04/25/19

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics in Air by SIM - Mansfield Lab	Associated s	ample(s):	03-06 Batch: W	G1229428-3					
Vinyl chloride	99		-		70-130	-		25	
1,1-Dichloroethene	96		-		70-130	-		25	
cis-1,2-Dichloroethene	102		-		70-130	-		25	
1,1,1-Trichloroethane	99		-		70-130	-		25	
Carbon tetrachloride	93		-		70-130	-		25	
Trichloroethene	98		-		70-130	-		25	
Tetrachloroethene	91		-		70-130	-		25	

641 WEST AVE. L1916400

Project Number: Q47005001 Report Date: 04/25/19

Canister and Flow Controller Information

Samplenum	Client ID	Media ID	Media Type	Date Prepared	Bottle Order	Cleaning Batch ID	Can Leak Check	Initial Pressure (in. Hg)	Pressure on Receipt (in. Hg)	Flow Controler Leak Chk	Flow Out mL/min	Flow In mL/min	% RPD
L1916400-01	SS-01	01119	Flow 5	04/08/19	288687		-	-	-	Pass	3.3	3.6	9
L1916400-01	SS-01	1564	6.0L Can	04/08/19	288687	L1913377-01	Pass	-29.9	-4.6	-	-	-	-
L1916400-02	SS-02	01283	Flow 5	04/08/19	288687		-	-	-	Pass	3.3	3.3	0
L1916400-02	SS-02	1557	6.0L Can	04/08/19	288687	L1913377-01	Pass	-29.7	-12.0	-	-	-	
L1916400-03	IA-01	0145	Flow 5	04/08/19	288687		-	-	-	Pass	3.3	3.6	9
L1916400-03	IA-01	2524	6.0L Can	04/08/19	288687	L1913377-03	Pass	-29.9	-6.2	-	-	-	-
L1916400-04	DUP	01302	Flow 5	04/08/19	288687		-	-	-	Pass	3.3	3.8	14
L1916400-04	DUP	1978	6.0L Can	04/08/19	288687	L1913377-03	Pass	-30.0	-6.3	-	-	-	
L1916400-05	IA-02	0155	Flow 5	04/08/19	288687		-	-	-	Pass	3.3	3.6	9
L1916400-05	IA-02	2670	6.0L Can	04/08/19	288687	L1913377-03	Pass	-29.9	-6.7	-	-	-	-
L1916400-06	OA-01	0771	Flow 5	04/08/19	288687		-	-	-	Pass	3.3	3.8	14
L1916400-06	OA-01	947	6.0L Can	04/08/19	288687	L1913377-01	Pass	-29.9	-5.0	-	-		

Project Name:

L1913377

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 04/25/19

Air Canister Certification Results

Lab ID: L1913377-01

Date Collected: 04/03/19 09:00 Client ID: **CAN 1520 SHELF 46** Date Received: 04/03/19

Sample Location:

Field Prep: Not Specified

Sample Depth:

Matrix: Air Anaytical Method: 48,TO-15 Analytical Date: 04/03/19 19:50

Analyst: TS

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	Lab							
Chlorodifluoromethane	ND	0.200		ND	0.707			1
Propylene	ND	0.500		ND	0.861			1
Propane	ND	0.500		ND	0.902			1
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Methanol	ND	5.00		ND	6.55			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Butane	ND	0.200		ND	0.475			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	5.00		ND	9.42			1
Dichlorofluoromethane	ND	0.200		ND	0.842			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acrolein	ND	0.500		ND	1.15			1
Acetone	ND	1.00		ND	2.38			1
Acetonitrile	ND	0.200		ND	0.336			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	ND	0.500		ND	1.23			1
Acrylonitrile	ND	0.500		ND	1.09			1
Pentane	ND	0.200		ND	0.590			1
Ethyl ether	ND	0.200		ND	0.606			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1

L1913377

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 04/25/19

Air Canister Certification Results

Lab ID: L1913377-01

Date Collected: 04/03/19 09:00 Client ID: **CAN 1520 SHELF 46** Date Received: 04/03/19

Sample Location: Field Prep: Not Specified

Запріє Беріп.		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield Lab)							
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
Vinyl acetate	ND	1.00		ND	3.52			1
2-Butanone	ND	0.500		ND	1.47			1
Xylenes, total	ND	0.600		ND	0.869			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
2,2-Dichloropropane	ND	0.200		ND	0.924			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Diisopropyl ether	ND	0.200		ND	0.836			1
tert-Butyl Ethyl Ether	ND	0.200		ND	0.836			1
1,2-Dichloroethene (total)	ND	1.00		ND	1.00			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
1,1-Dichloropropene	ND	0.200		ND	0.908			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
tert-Amyl Methyl Ether	ND	0.200		ND	0.836			1

L1913377

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 04/25/19

Air Canister Certification Results

Lab ID: L1913377-01

Date Collected: 04/03/19 09:00 Client ID: **CAN 1520 SHELF 46** Date Received: 04/03/19

Sample Location: Field Prep: Not Specified

затріє Беріп.		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield Lab								
Dibromomethane	ND	0.200		ND	1.42			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Methyl Methacrylate	ND	0.500		ND	2.05			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
1,3-Dichloropropane	ND	0.200		ND	0.924			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Butyl acetate	ND	0.500		ND	2.38			1
Octane	ND	0.200		ND	0.934			1
Tetrachloroethene	ND	0.200		ND	1.36			1
1,1,1,2-Tetrachloroethane	ND	0.200		ND	1.37			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1

L1913377

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 04/25/19

Air Canister Certification Results

Lab ID: L1913377-01

Date Collected: 04/03/19 09:00 Client ID: **CAN 1520 SHELF 46** Date Received: 04/03/19

Sample Location: Field Prep: Not Specified

Запріє Берці.		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield I	_ab							
o-Xylene	ND	0.200		ND	0.869			1
1,2,3-Trichloropropane	ND	0.200		ND	1.21			1
Nonane	ND	0.200		ND	1.05			1
Isopropylbenzene	ND	0.200		ND	0.983			1
Bromobenzene	ND	0.200		ND	0.793			1
2-Chlorotoluene	ND	0.200		ND	1.04			1
n-Propylbenzene	ND	0.200		ND	0.983			1
4-Chlorotoluene	ND	0.200		ND	1.04			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
tert-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Decane	ND	0.200		ND	1.16			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2-Dibromo-3-chloropropane	ND	0.200		ND	1.93			1
Undecane	ND	0.200		ND	1.28			1
Dodecane	ND	0.200		ND	1.39			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Naphthalene	ND	0.200		ND	1.05			1
1,2,3-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Project Name: Lab Number: **BATCH CANISTER CERTIFICATION** L1913377

Project Number: CANISTER QC BAT **Report Date:** 04/25/19

Air Canister Certification Results

Lab ID: L1913377-01

Date Collected: 04/03/19 09:00 Client ID: **CAN 1520 SHELF 46** Date Received: 04/03/19

Sample Location: Field Prep: Not Specified

Sample Depth:

ppbV ug/m3 Dilution Factor RL Results RL MDL Qualifier **Parameter** Results MDL

Volatile Organics in Air - Mansfield Lab

Dilution **Factor** Results Qualifier Units RDL

Tentatively Identified Compounds

No Tentatively Identified Compounds

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	84		60-140
Bromochloromethane	89		60-140
chlorobenzene-d5	83		60-140

L1913377

Not Specified

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 04/25/19

Air Canister Certification Results

Lab ID: L1913377-01

Date Collected: 04/03/19 09:00 Client ID: **CAN 1520 SHELF 46** Date Received: 04/03/19

Sample Location: Field Prep:

Sample Depth:

Matrix: Air

Anaytical Method: 48,TO-15-SIM Analytical Date: 04/03/19 19:50

Analyst: TS

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	- Mansfield Lab							
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.050		ND	0.349			1
Vinyl chloride	ND	0.020		ND	0.051			1
1,3-Butadiene	ND	0.020		ND	0.044			1
Bromomethane	ND	0.020		ND	0.078			1
Chloroethane	ND	0.100		ND	0.264			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.050		ND	0.281			1
Acrylonitrile	ND	0.500		ND	1.09			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
Methylene chloride	ND	0.500		ND	1.74			1
Freon-113	ND	0.050		ND	0.383			1
trans-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1-Dichloroethane	ND	0.020		ND	0.081			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
Chloroform	ND	0.020		ND	0.098			1
1,2-Dichloroethane	ND	0.020		ND	0.081			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Benzene	ND	0.100		ND	0.319			1
Carbon tetrachloride	ND	0.020		ND	0.126			1
1,2-Dichloropropane	ND	0.020		ND	0.092			1

L1913377

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 04/25/19

Air Canister Certification Results

Lab ID: L1913377-01

Date Collected: 04/03/19 09:00 Client ID: **CAN 1520 SHELF 46** Date Received: 04/03/19

Sample Location: Field Prep: Not Specified

Запіріє Беріп.		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	Mansfield Lab							
Bromodichloromethane	ND	0.020		ND	0.134			1
1,4-Dioxane	ND	0.100		ND	0.360			1
Trichloroethene	ND	0.020		ND	0.107			1
cis-1,3-Dichloropropene	ND	0.020		ND	0.091			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.020		ND	0.091			1
1,1,2-Trichloroethane	ND	0.020		ND	0.109			1
Toluene	ND	0.050		ND	0.188			1
Dibromochloromethane	ND	0.020		ND	0.170			1
1,2-Dibromoethane	ND	0.020		ND	0.154			1
Tetrachloroethene	ND	0.020		ND	0.136			1
1,1,1,2-Tetrachloroethane	ND	0.020		ND	0.137			1
Chlorobenzene	ND	0.100		ND	0.461			1
Ethylbenzene	ND	0.020		ND	0.087			1
p/m-Xylene	ND	0.040		ND	0.174			1
Bromoform	ND	0.020		ND	0.207			1
Styrene	ND	0.020		ND	0.085			1
1,1,2,2-Tetrachloroethane	ND	0.020		ND	0.137			1
o-Xylene	ND	0.020		ND	0.087			1
Isopropylbenzene	ND	0.200		ND	0.983			1
4-Ethyltoluene	ND	0.020		ND	0.098			1
1,3,5-Trimethybenzene	ND	0.020		ND	0.098			1
1,2,4-Trimethylbenzene	ND	0.020		ND	0.098			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.020		ND	0.120			1
1,4-Dichlorobenzene	ND	0.020		ND	0.120			1
sec-Butylbenzene	ND	0.200		ND	1.10			1

L1913377

Project Name: Lab Number: **BATCH CANISTER CERTIFICATION**

Project Number: CANISTER QC BAT **Report Date:** 04/25/19

Air Canister Certification Results

Lab ID: L1913377-01

Date Collected: 04/03/19 09:00 Client ID: CAN 1520 SHELF 46 Date Received: 04/03/19

Sample Location: Field Prep: Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	- Mansfield Lab							
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.020		ND	0.120			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trichlorobenzene	ND	0.050		ND	0.371			1
Naphthalene	ND	0.050		ND	0.262			1
1,2,3-Trichlorobenzene	ND	0.050		ND	0.371			1
Hexachlorobutadiene	ND	0.050		ND	0.533			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	81		60-140
bromochloromethane	93		60-140
chlorobenzene-d5	83		60-140

L1913377

04/03/19 09:00

Not Specified

04/03/19

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 04/25/19

Air Canister Certification Results

Lab ID: L1913377-03

Date Collected: Client ID: **CAN 785 SHELF 48** Date Received:

Sample Location: Field Prep:

Sample Depth:

Air Matrix: Anaytical Method: 48,TO-15 Analytical Date: 04/03/19 21:09

Analyst: TS

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield Lab								
Chlorodifluoromethane	ND	0.200		ND	0.707			1
Propylene	ND	0.500		ND	0.861			1
Propane	ND	0.500		ND	0.902			1
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Methanol	ND	5.00		ND	6.55			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Butane	ND	0.200		ND	0.475			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	5.00		ND	9.42			1
Dichlorofluoromethane	ND	0.200		ND	0.842			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acrolein	ND	0.500		ND	1.15			1
Acetone	ND	1.00		ND	2.38			1
Acetonitrile	ND	0.200		ND	0.336			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	ND	0.500		ND	1.23			1
Acrylonitrile	ND	0.500		ND	1.09			1
Pentane	ND	0.200		ND	0.590			1
Ethyl ether	ND	0.200		ND	0.606			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1

L1913377

04/03/19 09:00

Lab Number:

Date Collected:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 04/25/19

Air Canister Certification Results

Lab ID: L1913377-03

Client ID: CAN 785 SHELF 48 Date Received:

Sample Location:

Date Received: 04/03/19
Field Prep: Not Specified

Sample Deptn:		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	ld Lab							
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
Vinyl acetate	ND	1.00		ND	3.52			1
2-Butanone	ND	0.500		ND	1.47			1
Xylenes, total	ND	0.600		ND	0.869			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
2,2-Dichloropropane	ND	0.200		ND	0.924			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Diisopropyl ether	ND	0.200		ND	0.836			1
tert-Butyl Ethyl Ether	ND	0.200		ND	0.836			1
1,2-Dichloroethene (total)	ND	1.00		ND	1.00			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
1,1-Dichloropropene	ND	0.200		ND	0.908			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
tert-Amyl Methyl Ether	ND	0.200		ND	0.836			1

L1913377

04/03/19 09:00

Lab Number:

Date Collected:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 04/25/19

Air Canister Certification Results

Lab ID: L1913377-03

Client ID: CAN 785 SHELF 48 Date Received:

Sample Location:

Date Received: 04/03/19
Field Prep: Not Specified

	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield L	.ab							
Dibromomethane	ND	0.200		ND	1.42			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Methyl Methacrylate	ND	0.500		ND	2.05			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
1,3-Dichloropropane	ND	0.200		ND	0.924			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Butyl acetate	ND	0.500		ND	2.38			1
Octane	ND	0.200		ND	0.934			1
Tetrachloroethene	ND	0.200		ND	1.36			1
1,1,1,2-Tetrachloroethane	ND	0.200		ND	1.37			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1

L1913377

04/03/19 09:00

Lab Number:

Date Collected:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 04/25/19

Air Canister Certification Results

Lab ID: L1913377-03

Client ID: CAN 785 SHELF 48 Date F

Date Received: 04/03/19
Field Prep: Not Specified

Sample Location:

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfiel	d Lab							
o-Xylene	ND	0.200		ND	0.869			1
1,2,3-Trichloropropane	ND	0.200		ND	1.21			1
Nonane	ND	0.200		ND	1.05			1
Isopropylbenzene	ND	0.200		ND	0.983			1
Bromobenzene	ND	0.200		ND	0.793			1
2-Chlorotoluene	ND	0.200		ND	1.04			1
n-Propylbenzene	ND	0.200		ND	0.983			1
4-Chlorotoluene	ND	0.200		ND	1.04			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
tert-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Decane	ND	0.200		ND	1.16			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
sec-Butylbenzene	ND	0.200		ND	1.10			1
o-IsopropyItoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2-Dibromo-3-chloropropane	ND	0.200		ND	1.93			1
Undecane	ND	0.200		ND	1.28			1
Dodecane	ND	0.200		ND	1.39			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Naphthalene	ND	0.200		ND	1.05			1
1,2,3-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

04/03/19 09:00

Project Name: Lab Number: **BATCH CANISTER CERTIFICATION** L1913377

Project Number: CANISTER QC BAT **Report Date:** 04/25/19

Air Canister Certification Results

Lab ID: L1913377-03

Date Collected: Client ID: CAN 785 SHELF 48 Date Received:

04/03/19 Sample Location: Field Prep: Not Specified

Sample Depth:

ppbV ug/m3 Dilution Factor RL Results RL MDL Qualifier **Parameter** Results MDL

Volatile Organics in Air - Mansfield Lab

Dilution **Factor** Results Qualifier Units RDL

Tentatively Identified Compounds

No Tentatively Identified Compounds

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	80		60-140
Bromochloromethane	88		60-140
chlorobenzene-d5	82		60-140

L1913377

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 04/25/19

Air Canister Certification Results

Lab ID: L1913377-03

Date Collected: 04/03/19 09:00 Client ID: CAN 785 SHELF 48 Date Received: 04/03/19

Sample Location:

Field Prep: Not Specified

Sample Depth:

Matrix: Air

Anaytical Method: 48,TO-15-SIM Analytical Date: 04/03/19 21:09

Analyst: TS

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	- Mansfield Lab							
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.050		ND	0.349			1
Vinyl chloride	ND	0.020		ND	0.051			1
1,3-Butadiene	ND	0.020		ND	0.044			1
Bromomethane	ND	0.020		ND	0.078			1
Chloroethane	ND	0.100		ND	0.264			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.050		ND	0.281			1
Acrylonitrile	ND	0.500		ND	1.09			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
Methylene chloride	ND	0.500		ND	1.74			1
Freon-113	ND	0.050		ND	0.383			1
trans-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1-Dichloroethane	ND	0.020		ND	0.081			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
Chloroform	ND	0.020		ND	0.098			1
1,2-Dichloroethane	ND	0.020		ND	0.081			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Benzene	ND	0.100		ND	0.319			1
Carbon tetrachloride	ND	0.020		ND	0.126			1
1,2-Dichloropropane	ND	0.020		ND	0.092			1

L1913377

04/03/19 09:00

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 04/25/19

Air Canister Certification Results

Lab ID: L1913377-03

Date Collected: Client ID: CAN 785 SHELF 48 Date Received:

04/03/19 Sample Location: Field Prep: Not Specified

Запріє Беріп.		ppbV				Dilution		
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	Mansfield Lab							
Bromodichloromethane	ND	0.020		ND	0.134			1
1,4-Dioxane	ND	0.100		ND	0.360			1
Trichloroethene	ND	0.020		ND	0.107			1
cis-1,3-Dichloropropene	ND	0.020		ND	0.091			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.020		ND	0.091			1
1,1,2-Trichloroethane	ND	0.020		ND	0.109			1
Toluene	ND	0.050		ND	0.188			1
Dibromochloromethane	ND	0.020		ND	0.170			1
1,2-Dibromoethane	ND	0.020		ND	0.154			1
Tetrachloroethene	ND	0.020		ND	0.136			1
1,1,1,2-Tetrachloroethane	ND	0.020		ND	0.137			1
Chlorobenzene	ND	0.100		ND	0.461			1
Ethylbenzene	ND	0.020		ND	0.087			1
p/m-Xylene	ND	0.040		ND	0.174			1
Bromoform	ND	0.020		ND	0.207			1
Styrene	ND	0.020		ND	0.085			1
1,1,2,2-Tetrachloroethane	ND	0.020		ND	0.137			1
o-Xylene	ND	0.020		ND	0.087			1
Isopropylbenzene	ND	0.200		ND	0.983			1
4-Ethyltoluene	ND	0.020		ND	0.098			1
1,3,5-Trimethybenzene	ND	0.020		ND	0.098			1
1,2,4-Trimethylbenzene	ND	0.020		ND	0.098			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.020		ND	0.120			1
1,4-Dichlorobenzene	ND	0.020		ND	0.120			1
sec-Butylbenzene	ND	0.200		ND	1.10			1

Project Name: BATCH CANISTER CERTIFICATION Lab Number: L1913377

Project Number: CANISTER QC BAT Report Date: 04/25/19

Air Canister Certification Results

Lab ID: L1913377-03

Client ID: CAN 785 SHELF 48

Sample Location:

Date Collected:

04/03/19 09:00

Date Received:

04/03/19

Field Prep:

Not Specified

		ppbV		ug/m3		Dilution		
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	Mansfield Lab							
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.020		ND	0.120			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trichlorobenzene	ND	0.050		ND	0.371			1
Naphthalene	ND	0.050		ND	0.262			1
1,2,3-Trichlorobenzene	ND	0.050		ND	0.371			1
Hexachlorobutadiene	ND	0.050		ND	0.533			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	78		60-140
bromochloromethane	92		60-140
chlorobenzene-d5	81		60-140

Lab Number: L1916400

Report Date: 04/25/19

Sample Receipt and Container Information

Were project specific reporting limits specified?

641 WEST AVE.

Cooler Information

Project Name:

Cooler Custody Seal

N/A Absent

Project Number: Q47005001

Container Information				Initial	Final	Temp			Frozen		
	Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)	
	L1916400-01A	Canister - 6 Liter	N/A	NA			Υ	Absent		TO15-LL(30)	
	L1916400-02A	Canister - 6 Liter	N/A	NA			Υ	Absent		TO15-LL(30)	
	L1916400-03A	Canister - 6 Liter	N/A	NA			Υ	Absent		TO15-LL(30),TO15-SIM(30)	
	L1916400-04A	Canister - 6 Liter	N/A	NA			Υ	Absent		TO15-LL(30),TO15-SIM(30)	
	L1916400-05A	Canister - 6 Liter	N/A	NA			Υ	Absent		TO15-LL(30),TO15-SIM(30)	
	L1916400-06A	Canister - 6 Liter	N/A	NA			Υ	Absent		TO15-LL(30),TO15-SIM(30)	

Project Name: Lab Number: 641 WEST AVE. L1916400 **Project Number:** Q47005001 **Report Date:** 04/25/19

GLOSSARY

Acronyms

LOQ

MS

NP

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration. **EPA**

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD Laboratory Control Sample Duplicate: Refer to LCS.

Environmental Protection Agency

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

> - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations

Footnotes

Report Format: Data Usability Report

 Project Name:
 641 WEST AVE.
 Lab Number:
 L1916400

 Project Number:
 Q47005001
 Report Date:
 04/25/19

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

1

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- **ND** Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- ${f P}$ The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.

Report Format: Data Usability Report

 Project Name:
 641 WEST AVE.
 Lab Number:
 L1916400

 Project Number:
 Q47005001
 Report Date:
 04/25/19

REFERENCES

Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air. Second Edition. EPA/625/R-96/010b, January 1999.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance Title: Certificate/Approval Program Summary

ID No.:17873 Revision 12

Page 1 of 1

Published Date: 10/9/2018 4:58:19 PM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 6860: SCM: Perchlorate

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

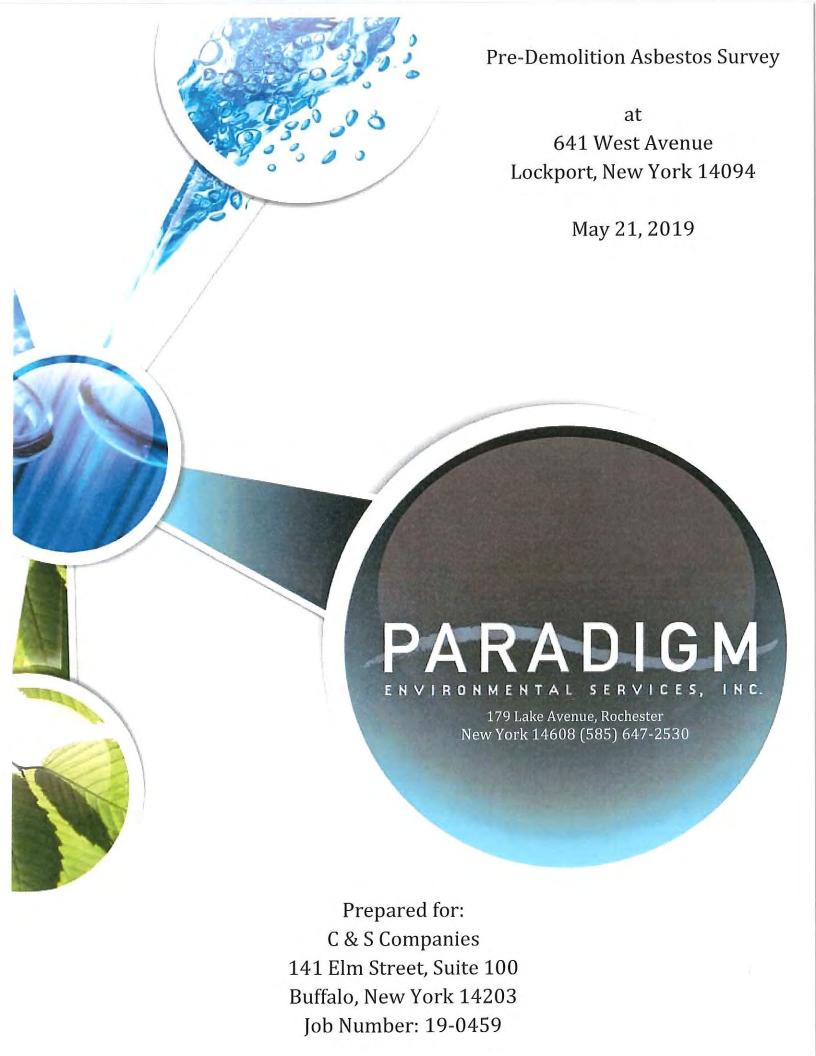
Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B


For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

Διριία	AIR AI	VALYSIS	PAGE_/_OF_/	Date Rec'd i	п Lab: 450	119	ALPHA Jo	bb#: U9	16/00
320 Forbes Blvd, Mans		Project Informatio	n	Report Info	ormation - Data	Deliverables	Billing Info		
TEL: 508-822-9300 F	AX: 508-822-3288	Project Name:	West Ave		SWARM AN EMBE		Same as C		
Client Information		Project Location:		ADEX	C2400-100000		-	TO HARMY TO A STATE OF	
Client 45 Z	ngineers, Inc.	Project #: Q47	MEM)		Checker: t based on Regulatory C	ritoria Indicated)			
Address: 14/ Z	In St	Project Manager:	2500	Other I	Formats:	ALLIA CONTRACTOR DATES		(A)	
Buffal	NY	ALPHA Quote #:			tandard pdf report) Deliverables		State/Fed	Requirements	Res / Com
Phone: 7/6-8	4-3752	Turn-Around Time	A CHARLESING SA	Report to: (r	Ifferent than Project Manager	D	NYSDOX	Program	Nes / Com/
Fax:					10 10	1			
Email: Comp. Lin	DOSCOS COM	Standard DR	USH (every confirmed if pre-approved)						
☐ These samples have be	en previously analyzed by Alpha	Date Due:	Time:	1			ANAL	LYSIS	
ALPHA Lab ID		A 75 TO THE PERSON OF THE PERS	Below Must			PHAN 40	APH SERVINGER AND THE SERVINGER & MACHINERY		
(Lab Use Only)	Sample ID	End Date Start Time E	ECTION Initial Final and Time Vacuum Vacuum	Sample Sample Matrix* Initia		ID-Flow Controller	FIXED Summers	Sample Com	monte (i o Pili
6400.01 5	5-01	419/910:099		1010	1 .	101119		/ Cumple Collin	neilla (i.e. Fil
.02 <	5-02		0:12-28.46-11.4			01283			
·cs I	A-01		0:00-29.13-5.9	0					
.04 T)IP			1010		1 0145			
00 7	A-02		0:00 -2037 -5.7	11	1978	01302			
100	20 21	The second secon	0:18-28.91-6.6	4 4	2670	0155			
-06 C	H-OL	1 10:45 11	0:30-29.01-4.0	SAA 1	1 947	077		den et e	
*SAMPLE MA	TRIX CODES SV	= Ambient Air (Indoor/Out = Soil Vapor/Landfill Gas/S er = Please Specify	door) VE		Container Type	<i>a</i> 5		Please print clearl completely. Samp	oles can not be
	11/	Religiuished By:	Date/Time	Rec	eived By:	De	ate/Time:	logged in and turn clock will not start	until any ambi-
	Broke.	1000	-541919	focalyr	FLORY (A	AC) 4/19	19 11:15	guities are resolve submitted are subj	ject to Alpha's
orm No: 101-02 Rev: (25-Sep-15) age 58 of 58	8 gir	They (TH	9/19/19 /1:10	2 -	R	04/19/1	EL 115	Terms and Condition See reverse side.	ons.

APPENDIX E

Asbestos and Lead-Based Paint Survey Reports

641 WEST AVENUE LOCKPORT, NEW YORK

TABLE OF CONTENTS

INTRODUCTION

LIMITATIONS

CONCLUSIONS

MATERIALS LIST

ASBESTOS CONTAINING MATERIALS SPACE BY SPACE SUMMARY

DRAWINGS

LABORATORY REPORTS

CHAINS OF CUSTODY

CERTIFICATIONS

INTRODUCTION

Paradigm Environmental Services, Inc. was retained by the C & S Companies on May 21, 2019 to conduct an inspection for the detection of asbestos containing materials located at 641 West Avenue, Lockport, New York.

The objective of this inspection was to identify and assess with due diligence the locations, quantities, friability and condition of all types of asbestos containing materials at the above referenced location. Paradigm Environmental performed all sample analysis and analytical reports for this project. Field services and survey reports were generated by Envoy Environmental Consultants as a subcontractor to Paradigm. Envoy Environmental Consultants inspector Geoff Siebert (AH#03-06811) conducted this inspection with the procedures and guidelines dictated by state and federal regulatory agencies. The inspectors of Envoy Environmental Consultants, Inc. selected materials for inclusion in this report through an understanding of the scope of the renovation as indicated by the building owner and the historical uses of asbestos in general. Generally, if a building material within a structure could contain asbestos the material was included in the survey.

Samples were collected from locations within each homogeneous sampling area. Samples consist of a small amount of the subject material. Sampling points were recorded and cross-referenced to prepared sketches. Individual samples were also recorded on a chain of custody document. Samples were then transported to the Paradigm analytical laboratory for asbestos analysis.

The Paradigm laboratory is accredited through NYSDOH/ELAP (Lab ID# 10958) for Solid and Hazardous Waste and Air and Emissions for Bulk Asbestos Fiber Analysis. The chain of custody record accompanies all samples from the point collected until they reach the laboratory. Samples are stored at the laboratory for 90 days then disposed of according to authoritative regulations.

The analysis methodology used is as follows:

Asbestos Bulk Samples:

New York State Department of Health, ELAP Method 198.1 and 198.6 ("Polarized Light Microscopy Methods for Identifying and Quantitating Asbestos in Bulk Samples and in Non-Friable Organically Bound Bulk Samples."). New York State Department of Health, ELAP Method 198.4 ("Transmission Electron Microscope Method for Identifying and Quantitating Asbestos in Non-Friable Organically Bound Bulk Samples").

LIMITATIONS

The information provided in this report was compiled from field and laboratory data and was prepared for the C & S Companies and referenced to 641 West Avenue, Lockport, New York. Materials noted and recorded are intended to represent subject site at the time and date that the observations were made. Conclusions and recommendations provided in this report are based on the assumption that materials identified are homogenous throughout their application. Determinations of suspect asbestos containing materials within the building were subject to the accessibility of each individual area or space. Determinations of asbestos containing materials were made by means of bulk sampling, physical assessment or visual assessment if the materials were not accessible. Envoy Environmental Consultants Inc. and Paradigm Environmental Services, Inc. accepts no responsibility for the content of building materials within areas or spaces that were unknown to us, not reasonably accessible, or not part of the scope of the project as defined by the client. Envoy Environmental Consultants Inc. and Paradigm Environmental Services, Inc. assumes no liability for any buildings that were not identified by the client that may fall under state or federal regulation. All conclusions provided in this report are based on the bulks sampling that was performed at the above mentioned site on the above mentioned dates.

As per the direction of the client, C & S Companies, this survey was limited to suspect asbestos containing materials as listed in the materials tested table; if additional materials will be impacted by the demolition these materials should be considered asbestos containing until tested.

All quantities are approximations and must be field verified by the contractor prior to the submittal of bids. Contractor bids are expected to be based on their own determination of quantities and not the quantities stated in this report.

This asbestos survey report is not intended to be a bid document for a scope of work for the asbestos abatement contractor. The survey report only identifies and assesses the location, quantity and condition of ACM, PACM or asbestos materials at the subject site. The asbestos survey report is intended to be used as a tool in the development of an asbestos abatement project design or work scope. Under the Code Rule regulation this task can only be performed by a Certified Project Designer.

Energized mechanical or electrical systems were not sampled as part of the survey, and were visually assessed as ACM (Asbestos Containing Material). Suspect materials that are visually assessed by the inspector as ACM shall be treated as ACM, unless bulk sampling is conducted consistent with EPA and OSHA accepted methods, and the analysis meets the requirements of Code Rule 56 and the suspect material is found not to be asbestos containing. These systems may contain one or more of the following components, but are not limited to these components: brakes, clutches, gaskets, insulating panels, blocks or backer boards, wire insulation, explosion proof lighting gaskets and fitting packings, insulating papers, pipe sleeve packings, fire stops, caulks, paints and coatings.

CONCLUSIONS

Paradigm Environmental Services, Inc. was retained to perform a pre-demolition asbestos survey from **641 West Avenue, Lockport, New York** on **May 21, 2019**. A New York State certified inspector sampled suspect asbestos containing materials from the above mentioned site. Sample locations and custody information were recorded and the samples were transported to the Paradigm laboratory for analysis.

Transmittal of Building/Structure Asbestos Survey Information – As required by New York State Industrial Code Rule 56, one (1) copy of the results of the building/structure asbestos survey shall be immediately transmitted by the building/structure owner as follows:

- One (1) copy of the completed asbestos survey shall be sent by the owner or their agent to the local entity charged with issuing a permit for such demolition, renovation, remodeling or repair work under State or local laws.
- The completed asbestos survey for controlled demolition (as per Subpart 56-11.5) or pre-demolition asbestos projects shall be submitted to the appropriate Asbestos Control Bureau district office.
- The completed asbestos survey shall be kept on the construction site with the asbestos notification and variance, if required, throughout the duration of the asbestos project and any associated demolition, renovation, remodeling or repair project.

The following is a brief description of the space by space survey.

Col. 1	Col. 2	Col. 3	Col. 4	Col. 5	Col. 6	Col. 7	Col. 8	Col 9	Col 10	Col. 11
Room #	Sample #'s taken in Room	Positive Sample ID#	Positive Material Description	Location of Material	Condition	Friable Non- Friable NOB	Type of Material	SQ FT	Lin FT	Units

- 1. Column 1: indicates the Room number, room description and estimated square footage of the room referenced to the attached map/drawing.
- 2. Column 2: indicates the bulk sample numbers that were taken in the Room indicated in column 1. i.e. 001-007 means samples one through seven were sampled in the room, none would indicate that no samples were taken in the room. You will not see the first three letters of the sample in this column. If you would like to know the materials that were tested in the room please refer to the analytical results which are documented in numerical order.
- 3. Column 3: indicates the sample number that proves the material is positive for asbestos content. This sample may have taken in the space in column 1 or determined a homogeneous area (material) by the inspector to a sample that was taken in another space. For the purpose of this report all samples are assigned a six digit alphanumeric sample identification number. The first three letters/numbers indicate the material, found in column 4. The last three numbers indicate the sample number in the sequence in which they were taken. If there is a letter after the last three numbers, this indicates that the laboratory or the inspector determines that there were multiple layers within the sample, requiring additional sampling under EPA protocols.
- 4. Column 4: gives a brief description of the asbestos containing material or the material that is to be treated as asbestos containing as determined by the inspector. At times non-asbestos materials are contaminated with asbestos, therefore must be treated as asbestos.
- 5. Column 5: indicates a brief description of the location of the material in the room and not the location where the sample was taken from. You will find locations of where each sample was taken from on the analytical sampling results.
- 6. Column 6: indicates the physical condition of the material as assessed by the inspector in the space indicated in column 1, according to the condition description described below. For the purpose of this report, the condition of the ACM will be reported in good, fair or poor condition. Conditions will be listed in column 6 of the survey report will be as follows;
 - a. Good: means material is intact with no visible damage.
 - b. Fair: means material contains fewer than 10% distributed damage or 25% localized damage.
 - c. Poor: means material contains over 10% distributed damage or 25% localized damage.
 - Conditions listed in column 6 of the space by space survey report are only related to the specific material for the specific space.
- 7. Column 7: indicates the friability of the material in that space as determined by the inspector and the analytical laboratory consistent with Code Rule 56 and EPA regulations.
- 8. Column 8: indicates the type of material in that space as determined by the inspector and the analytical laboratory consistent with Code Rule 56 and EPA regulations.
- 9. Column 9: indicates the square footage of ACM material found in the space.
- 10. Column 10: indicates the linear footage of ACM material found in the space. Pipe insulation that is two feet or greater in diameter is required to be reported in square feet according to code Rule 56.
- 11. Column 11: indicates the units of ACM material found in the space.

MATERIALS TESTED 641 West Avenue

Lockport, New York

Sample ID	Description of Material	PLM Asbestos Fibers Type & Percentage	TEM Asbestos Fibers Type & Percentage	Friable Non-Friable NOB
DWL-01	Gray Drywall	None Detected	Not Required	Non-Friable
SPK-02	White Spackle	<1.0% Residue Remaining. PLM and TEM Not Required.	N/A	Friable
DWL-03	Gray Drywall	None Detected	Not Required	Non-Friable
SPK-04	White Spackle	<1.0% Residue Remaining. PLM and TEM Not Required.	N/A	Friable
CPL-05	White Ceiling Plaster	None Detected	Not Required	Non-Friable
CPL-06	Gray Ceiling Plaster	None Detected	Not Required	Non-Friable
WPL-07	White Wall Plaster	None Detected	Not Required	Non-Friable
WPL-08	Gray Wall Plaster	None Detected	Not Required	Non-Friable
CPL-09	White Ceiling Plaster	None Detected	Not Required	Non-Friable
CPL-10	Gray Ceiling Plaster	None Detected	Not Required	Non-Friable
WPL-11	White Wall Plaster	None Detected	Not Required	Non-Friable
WPL-12	Gray Wall Plaster	None Detected	Not Required	Non-Friable
WPL-13	White Wall Plaster	None Detected	Not Required	Non-Friable
WPL-14	Gray Wall Plaster	None Detected	Not Required	Non-Friable
CPL-15	White Ceiling Plaster	None Detected	Not Required	Non-Friable
CPL-16	Gray Ceiling Plaster	None Detected	Not Required	Non-Friable
WIG-17	Gray Window Glaze	Inconclusive Trace Chrysotile Detected	Chrysotile 4.2%	Non-Friable
WIG-18	Gray Window Glaze	Inconclusive Trace Chrysotile Detected	Stop Positive ** No TEM	Non-Friable
WIC-19	White Window Caulk	Chrysotile 6.4%	Not Required	Non-Friable
WIC-20	White Window Caulk	STOP POSITIVE SAMPLE	NOT ANALYZED	Non-Friable
WAC-21	White Wall Caulk	Chrysotile 2.1%	Not Required	Non-Friable
WAC-22	White Wall Caulk	STOP POSITIVE SAMPLE	NOT ANALYZED	Non-Friable
TRN-23	Gray Transite	Chrysotile 27%	Not Required	Non-Friable
TRN-24	Gray Transite	STOP POSITIVE SAMPLE	NOT ANALYZED	Non-Friable
ROF-25	Black Roofing	Chrysotile 5.0%	Not Required	NOB
ROF-25	Black Roofing	STOP POSITIVE SAMPLE	NOT ANALYZED	NOB
ROF-25	Black Roofing	STOP POSITIVE SAMPLE	NOT ANALYZED	NOB
ROF-25	Black Roofing	STOP POSITIVE SAMPLE	NOT ANALYZED	NOB
ROF-26	Black Roofing	STOP POSITIVE SAMPLE	NOT ANALYZED	NOB
ROF-26	Black Roofing	STOP POSITIVE SAMPLE	NOT ANALYZED	NOB
ROF-26	Black Roofing	STOP POSITIVE SAMPLE	NOT ANALYZED	NOB
ROF-26	Black Roofing	STOP POSITIVE SAMPLE	NOT ANALYZED	NOB
ROF-26	Black Roofing	STOP POSITIVE SAMPLE	NOT ANALYZED	NOB

This asbestos survey is a multi-page document which must be viewed in its entirety; see limitations. Paradigm Job Number 19-0459

Sample ID	Description of Material	PLM Asbestos Fibers Type & Percentage	TEM Asbestos Fibers Type & Percentage	Friable Non-Friable NOB
ROF-27	Black Roofing	Inconclusive Trace Chrysotile Detected	Chrysotile 1.1%	NOB
ROF-27	Black Roofing	Inconclusive Trace Chrysotile Detected	Stop Positive ** No TEM	NOB
ROF-28	Black Roofing	Inconclusive No Ashestos Detected	Stop Positive ** No TEM	NOB_
ROF-28	Black Roofing	Inconclusive Trace Chrysotile Detected	Stop Positive ** No TEM	NOB
RTR-29	Black Roof Tar	Chrysotile 14%	Not Required	NOB
RTR-30	Black Roof Tar	STOP POSITIVE SAMPLE	NOT ANALYZED	NOB

<u>ASBESTOS CONTAINING MATERIALS</u> <u>SPACE BY SPACE SUMMARY</u>

641 West Avenue Lockport, New York

Area	Sample #'s taken in Area	Positive Sample ID#	Positive Material Description	Location of Material	Condition	Friable ** Non- Friable NOB	Type of Material	SQ FT	Lin FT	Unit
Room 1	01-08	WIG-17	Gray Window Glaze	On Interior Windows	Fair	Non- Friable	MISC		150	
Room 2	09-14	None	No Asbestos Detected in Materials Tested					0	0	0
Room 3	None	None	No Suspect Materials					0	0	0
Room 4	None	None	No Asbestos Detected in Materials Tested					0	0	0
Room 5	15-17	WIG-17	Gray Window Glaze	On Windows	Good	Non- Friable	MISC		60	
Exterior	18-30	WIG-17	Gray Window Glaze	On Windows	Poor	Non- Friable	MISC		210	
		WIC-19	White Window Caulk	Around Windows	Poor	Non- Friable	MISC		75	
		WAC-21	White Wall Caulk	On Wall Panels	Poor	Non- Friable	MISC		460	
•		TRN-23	Gray Transite	In Pile on Roof	Good	Non- Friable	MISC	80	j.	
		ROF-25	Black Roofing	Upper Roof	Fair	NOB	MISC	600		
		ROF-27	Black Roofing	Lower Roof	Fair	NOB	MISC	500		
		RTR-29	Black Roof Tar	On Walls	Fair	NOB	MISC		350	

Totals	1180	1305	0

Assume - Indicates materials assumed positive for asbestos containing materials by inspector; inaccessible area.

U- Inspector unable to determine quantity

This asbestos survey is a multi-page document which must be viewed in its entirety; see limitations.

^{*}Reflects quantifiable locations only; additional material maybe present, but not quantifiable per table.

** Materials are categorized as friable or non-friable based on their intact condition. For designer abatement purposes materials labeled as non-friable may become friable, based on methods of handling.

All layers of multi-layered systems are analyzed, quantified and reported separately, as specified by NYSDOL and NYSDOH. In some cases, multi-layered systems may be combined for design and abatement purposes, with effective quantities adjusted accordingly.

All quantities in this report are approximations and must be field verified by the Abatement contractor. Contractor bids are expected to be based on their own determinations of quantities and not the approximate quantities stated in this report.

Paradigm certifies that this report regarding 641 West Avenue, Lockport, New York based on the observations of the inspector and believes it to be an accurate representation of the conditions as they existed on May 21, 2019.

Geoff Siebert

Envoy Environmental Consultants, Inc.

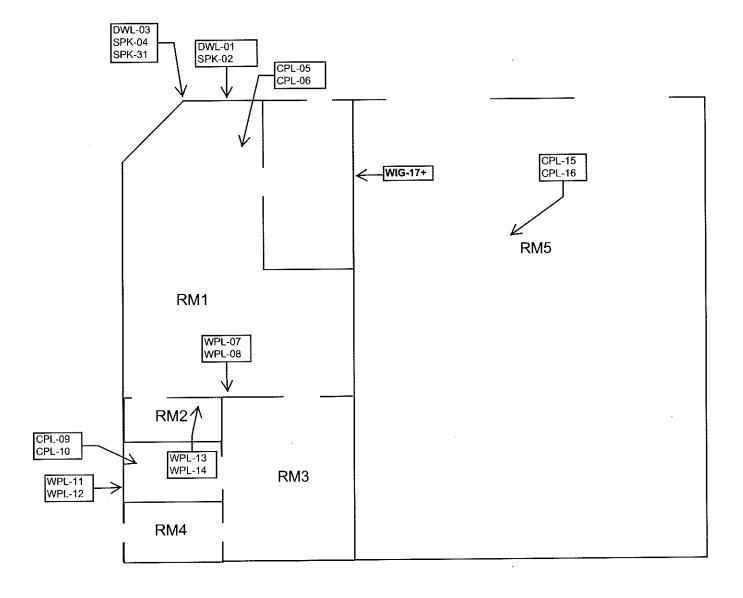
Inspector #AH 03-06811

Paradigm appreciates this opportunity to provide you with our professional services. If you have any questions, please feel free to contact me at (585) 647-2530.

Mary Dohr

Asbestos Operations Manager

Paradigm Environmental Services, Inc.

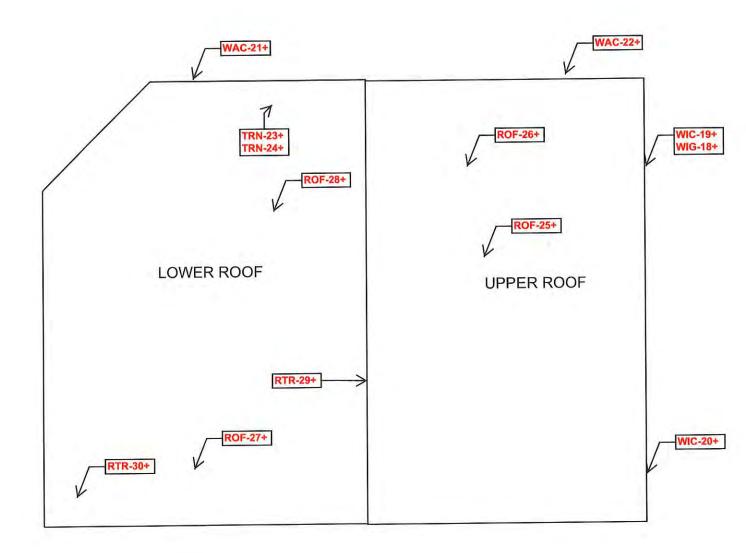

mdohr@paradigmenv.com

Client: C & S Companies

Location: 641 West Avenue, Lockport, New York

Work Area: Interior Project Number: 19-0459

Date: May 21, 2019



Client: C & S Companies

Location: 641 West Avenue, Lockport, New York

Work Area: Exterior Project Number: 19-0459

Date: May 21, 2019

Client:

C & S Companies

Job No: 4497-19

Location:

641 West Avenue, Lockport, New York

Page: 1 of 9

Entire Property

5/21/2019

Client ID	Lab ID	Sampling Location	Description	PLM Asbestos Fibers Type & Percentage	PLM Total Asbestos	N O B	TEM Asbestos Fibers Type & Percentage	TEM Total Asbestos	PLM Non-Asbestos Fibers Type & Percentage	Non- Fibrous Matrix Materia %
DWL-01	37808	Room 1-Partial Wall	Gray Drywall	None Detected	0%		Not Required	N/A	Cellulose 5%	95%
SPK-02	37809	Room 1-On Drywall	White Spackle	<1.0% Residue Remaining. PLM and TEM Not Required.	N/A	х	N/A	N/A	N/A	N/A
DWL-03	37810	Room 1-Partial Wall	Gray Drywall	None Detected	0%		Not Required	N/A	Cellulose 5%	95%
SPK-04	37811	Room 1-On Drywall	White Spackle	<1.0% Residue Remaining, PLM and TEM Not Required.	N/A	х	N/A	N/A	N/A	N/A
CPL-05	37812	Room 1-Ceiling	White Ceiling Plaster	None Detected	0%		Not Required	N/A	None Detected	100%
CPL-06	37813	Room 1-Ceiling	Gray Ceiling Plaster	None Detected	0%		Not Required	N/A	None Detected	100%
WPL-07	37814	Room 1-Partial Wall	White Wall Plaster	None Detected	0%		Not Required	N/A	None Detected	100%
WPL-08	37815	Room 1-Partial Wall	Gray Wall Plaster	None Detected	0%		Not Required	N/A	None Detected	100%
CPL-09	37816	Room 2-Ceiling	White Ceiling Plaster	None Detected	0%		Not Required	N/A	None Detected	100%
CPL-10	37817	Room 2-Ceiling	Gray Ceiling Plaster	None Detected	0%	H	Not Required	N/A	None Detected	100%

KEY TO NOB COLUMN SYMBOLS

No Symbol in the NOB column denotes sample analyzed by ELAP Method 198.1 (PLM).

v NOB (non-friable organically bound)denotes material analyzed by ELAP Method 198.6 (PLM) and 198.4 (TEM) as noted.

V denotes material analyzed by ELAP Method 198.6 (PLM) per NYSDOH. This Method does not remove vermiculite and may underestimate the level of asbestos present in a sample containing greater than 10% vermiculite.

denotes friable material analyzed by ELAP Method 198.6 (PLM) and 198.4 (TEM) as noted.

X denotes sample prepped only by ELAP Method 198.6.

* Polarized-light microscopy is not consistently reliable in detecting asbestos in floor coverings and similar non-friable organically bound materials.

Quantitative transmission electron microscopy is currently the only method that can be used to determine if this material can be considered or treated as non-asbestos

containing

PLM Bulk Asbestos Analysis by New York State Department of Health, ELAP Method 198.1,198.4 and 198.6 ("Polarized Light Microscopy and Transmission Electron Microscopy Methods for Identifying and Quantitating Asbestos in Bulk Samples and in Non-Friable Organically Bound Bulk Samples.") or EPA 600/M4-82-020 per 40 CFR 763 (NVLAP Lab Code 200530-0),

ELAP ID No.: 10958

Lab Code 200530-0 for PLM Analysis

PLM Date Analyzed: 5/24/2019

Olympus BH-2 #232953

TEM Date Analyzed: N/A TEM Analyst: N/A

Microscope: Analyst:

T. Bush

Laboratory Results Approved By: Asbestos Operations Manager or Designee

Client:

C & S Companies

Job No: 4497-19

Location:

641 West Avenue, Lockport, New York

Page: 2 of 9

Entire Property

Sample Date:

5/21/2019

Sample I	1	5/21/2019		PLM Asbestos	PLM	IN	TEM Asbestos	TEM	PLM	Non-
Client ID	Lab ID	Sampling Location	Description	Fibers Type & Percentage	Total Asbestos	0 B	Fibers Type & Percentage	Total Asbestos	Non-Asbestos Fibers Type & Percentage	Fibrous Matrix Materia %
WPL-11	37818	Room 2-Wall	White Wall Plaster	None Detected	0%		Not Required	N/A	None Detected	100%
WPL-12	37819	Room 2-Wall	Gray Wall Plaster	None Detected	0%		Not Required	N/A	None Detected	100%
WPL-13	37820	Room 2-Wall	White Wall Plaster	None Detected	0%	H	Not Required	N/A	None Detected	100%
WPL-14	37821	Room 2-Wall	Gray Wall Plaster	None Detected	0%		Not Required	N/A	None Detected	100%
CPL-15	37822	Room 5-Ceiling	White Ceiling Plaster	None Detected	0%		Not Required	N/A	None Detected	100%
CPL-16	37823	Room 5-Ceiling	Gray Ceiling Plaster	None Detected	0%		Not Required	N/A	None Detected	100%
WIG-17	37824	Room 5-On Window	Gray Window Glaze	Inconclusive Trace Chrysotile Detected	<1.0%	#	Chrysotile 4.2%	4.2%	None Detected	95.8%
WIG-18	37825	Exterior-On Window	Gray Window Glaze	Inconclusive Trace Chrysotile Detected	<1.0%	#	Stop Positive ** No TEM	N/A	None Detected	100%
WIC-19	37826	Exterior-Around Windows	White Window Caulk	Chrysotile 6.4%	6.4%	#	Not Required	N/A	None Detected	93.6%
WIC-20	37827	Exterior-Around Windows	White Window Caulk	STOP	POSITIVE	x	SAMPLE	NOT	ANALYZED	N/A

KEY TO NOB COLUMN SYMBOLS

No Symbol in the NOB column denotes sample analyzed by ELAP Method 198.1 (PLM).

v NOB (non-friable organically bound)denotes material analyzed by ELAP Method 198.6 (PLM) and 198.4 (TEM) as noted.

V denotes material analyzed by ELAP Method 198.6 (PLM) per NYSDOH. This Method does not remove vermiculite and may underestimate the level of asbestos present in a sample containing greater than 10% vermiculite.

denotes friable material analyzed by ELAP Method 198.6 (PLM) and 198.4 (TEM) as noted.

X denotes sample prepped only by ELAP Method 198.6.

** Polarized-light microscopy is not consistently reliable in detecting asbestos in floor coverings and similar non-friable organically bound materials.

Quantitative transmission electron microscopy is currently the only method that can be used to determine if this material can be considered or treated as non-asbestos

containing.

PLM Bulk Asbestos Analysis by New York State Department of Health, ELAP Method 198.1, 198.4 and 198.6 ("Polarized Light Microscopy and Transmission Electron Microscopy Methods for Identifying and Quantitating Asbestos in Bulk Samples and in Non-Friable Organically Bound Bulk Samples.") or EPA 600/M4-82-020 per 40 CFR 763 (NVLAP Lab Code 200530-0),

TESTING TO

ELAP ID No.: 10958

Lab Code 200530-0 for PLM Analysis

PLM Date Analyzed: 5/24/2019

Olympus BH-2 #232953

TEM Date Analyzed: 5/29/2019
TEM Analyst: A. Voldbakken

Microscope: Analyst:

T. Bush

Laboratory Results Approved By: Asbestos Operations Manager or Designee

Mary Dohr

Client:

C & S Companies

Job No: 4497-19

Location:

641 West Avenue, Lockport, New York

Page: 3 of 9

Entire Property

Client ID	Lab ID	Sampling Location	Description	PLM Asbestos Fibers Type & Percentage	PLM Total Asbestos	N O B	TEM Asbestos Fibers Type & Percentage	TEM Total Asbestos	PLM Non-Asbestos Fibers Type & Percentage	Non- Fibrous Matrix Material %
WAC-21	37828	Exterior-On Wall Panels	White Wall Caulk	Chrysotile 2.1%	2.1%	#	Not Required	N/A	None Detected	97.9%
WAC-22	37829	Exterior-On Wall Panels	White Wall Caulk	STOP	POSITIVE	х	SAMPLE	NOT	ANALYZED	N/A
TRN-23	37830	Exterior-Panels on Roof	Gray Fibrous Transite	Chrysotile 27%	27%		Not Required	N/A	None Detected	73%
TRN-24	37831	Exterior-Panels on Roof	Gray Transite	STOP	POSITIVE		SAMPLE	NOT	ANALYZED	N/A
ROF-25	37832a	Exterior-Upper Roof	Black Fibrous Roofing	Chrysotile 5.0%	5.0%	V	Not Required	N/A	Fiberglass 30%	65%
ROF-25	37832b	Exterior-Upper Roof	Black Roofing	STOP	POSITIVE	x	SAMPLE	NOT	ANALYZED	N/A
ROF-25	37832c	Exterior-Upper Roof	Black Roofing	STOP	POSITIVE	х	SAMPLE	NOT	ANALYZED	N/A
ROF-25	37832d	Exterior-Upper Roof	Black Roofing	STOP	POSITIVE	х	SAMPLE	NOT	ANALYZED	N/A
ROF-026	37833a	Exterior-Upper Roof	Black Roofing	STOP	POSITIVE	х	SAMPLE	NOT	ANALYZED	N/A
ROF-026	37833b	Exterior-Upper Roof	Black Roofing	STOP	POSITIVE	x	SAMPLE	NOT	ANALYZED	N/A

KEY TO NOB COLUMN SYMBOLS

No Symbol in the NOB column denotes sample analyzed by ELAP Method 198.1 (PLM).

V NOB (non-friable organically bound)denotes material analyzed by ELAP Method 198.6 (PLM) and 198.4 (TEM) as noted.

V denotes material analyzed by ELAP Method 198.6 (PLM) per NYSDOH. This Method does not remove vermiculite and may underestimate the level of asbestos present in a sample containing greater than 10% vermiculite.

denotes friable material analyzed by ELAP Method 198.6 (PLM) and 198.4 (TEM) as noted.

X denotes sample prepped only by ELAP Method 198.6.

* Polarized-light microscopy is not consistently reliable in detecting asbestos in floor coverings and similar non-friable organically bound materials.

Quantitative transmission electron microscopy is currently the only method that can be used to determine if this material can be considered or treated as non-asbestos

PLM Bulk Asbestos Analysis by New York State Department of Health, ELAP Method 198.1,198.4 and 198.6 ("Polarized Light Microscopy and Transmission Electron Microscopy Methods for Identifying and Quantitating Asbestos in Bulk Samples and in Non-Friable Organically Bound Bulk Samples." Jor EPA 600/M4-82-020 per 40 CFR 763 (NVLAP Lab Code 200530-0),

Lab Code 200530-0 for PLM Analysis

PLM Date Analyzed: 5/24/2019

Olympus BH-2 #232953 Microscope:

TEM Date Analyzed: N/A TEM Analyst: N/A

T. Bush Analyst:

> Laboratory Results Approved By: **Asbestos Operations Manager or Designee**

Mary Dohr

ELAP ID No.: 10958

Client:

C & S Companies

Job No: 4497-19

Location:

641 West Avenue, Lockport, New York

Page: 4 of 9

Entire Property

Samula Data

5/21/2019

Client ID	Lab ID	Sampling Location	Description	PLM Asbestos Fibers Type & Percentage	PLM Total Asbestos	N O B	TEM Asbestos Fibers Type & Percentage	TEM Total Asbestos	PLM Non-Asbestos Fibers Type & Percentage	Non- Fibrous Matrix Material %
ROF-026	37833с	Exterior-Upper Roof	Black Roofing	STOP	POSITIVE	х	SAMPLE	NOT	ANALYZED	N/A
ROF-026	37833d	Exterior-Upper Roof	Black Roofing	STOP	POSITIVE	х	SAMPLE	NOT	ANALYZED	N/A
ROF-026	37833e	Exterior-Upper Roof	Black Roofing	STOP	POSITIVE	х	SAMPLE	NOT	ANALYZED	N/A
ROF-027	37834a	Exterior-Lower Roof	Black Roofing	Inconclusive Trace Chrysotile Detected	<1.0%	V	Chrysotile 1.1%	1.1%	None Detected	98.9%
ROF-027	37834b	Exterior-Lower Roof	Black Roofing	Inconclusive Trace Chrysotile Detected	<1.0%	V	Stop Positive ** No TEM	N/A	None Detected	100%
ROF-028	37835a	Exterior-Lower Roof	Black Roofing	Inconclusive No Asbestos Detected	0%	V	Stop Positive ** No TEM	N/A	None Detected	100%
ROF-028	37835b	Exterior-Lower Roof	Black Roofing	Inconclusive Trace Chrysotile Detected	<1.0%	ν	Stop Positive ** No TEM	N/A	Fiberglass 5%	95%
RTR-029	37836	Exterior-On Roof at Chimney	Black Fibrous Roof Tar	Chrysotile 14%	14%	V	Not Required	N/A	None Detected	86%
RTR-030	37837	Exterior-On Roof at Parapet Wall	Black Roof Tar	STOP	POSITIVE	х	SAMPLE	NOT	ANALYZED	N/A

KEY TO NOB COLUMN SYMBOLS

No Symbol in the NOB column denotes sample analyzed by ELAP Method 198.1 (PLM).

v NOB (non-friable organically bound)denotes material analyzed by ELAP Method 198.6 (PLM) and 198.4 (TEM) as noted.

V denotes material analyzed by ELAP Method 198.6 (PLM) per NYSDOH. This Method does not remove vermiculite and may underestimate the level of asbestos present in a sample containing greater than 10% vermiculite.

denotes friable material analyzed by ELAP Method 198.6 (PLM) and 198.4 (TEM) as noted.

X denotes sample prepped only by ELAP Method 198.6.

** Polarized-light microscopy is not consistently reliable in detecting asbestos in floor coverings and similar non-friable organically bound materials.

Quantitative transmission electron microscopy is currently the only method that can be used to determine if this material can be considered or treated as non-asbestos

containing.
PLM Bulk Asbestos Analysis by New York State Department of Health, ELAP Method 198.1, 198.4 and 198.6 ("Polarized Light Microscopy and Transmission Electron Microscopy Methods for Identifying and Quantitating Asbestos in Bulk Samples and in Non-Friable Organically Bound Bulk Samples.") or EPA 600/M4-82-020 per 40 CFR 763 (NVLAP Lab Code 200530-0),

Lab Code 200530-0 for PLM Analysis

PLM Date Analyzed: 5/24/2019

TEM Date Analyzed: N/A TEM Analyst: N/A Olympus BH-2 #232953

Microscope: Analyst:

T. Bush

Laboratory Results Approved By: **Asbestos Operations Manager or Designee**

ELAP ID No.: 10958

Client:

C & S Companies

Job No: 4497-19

Location:

641 West Avenue, Lockport, New York

Page: 5 of 9

Entire Property

F /24 /2010

Sample I	Lab ID	5/21/2019 Sampling Location	Description	PLM Asbestos Fibers Type & Percentage	PLM Total Asbestos	N O B	TEM Asbestos Fibers Type & Percentage	TEM Total Asbestos	PLM Non-Asbestos Fibers Type & Percentage	Non- Fibrous Matrix Materia %
SPK-31	37838	Room 1-On Drywall	White Spackle	Inconclusive No Asbestos Detected	0%	V	None Detected	<1.0%	None Detected	100%

KEY TO NOB COLUMN SYMBOLS

No Symbol in the NOB column denotes sample analyzed by ELAP Method 198.1 (PLM).

V NOB (non-friable organically bound)denotes material analyzed by ELAP Method 198.6 (PLM) and 198.4 (TEM) as noted.

V denotes material analyzed by ELAP Method 198.6 (PLM) per NYSDOH. This Method does not remove vermiculite and may underestimate the level of asbestos present in a sample containing greater than 10% vermiculite.

denotes friable material analyzed by ELAP Method 198.6 (PLM) and 198.4 (TEM) as noted.

X denotes sample prepped only by ELAP Method 198.6.

T. Bush

** Polarized-light microscopy is not consistently reliable in detecting asbestos in floor coverings and similar non-friable organically bound materials.

Quantitative transmission electron microscopy is currently the only method that can be used to determine if this material can be considered or treated as non-asbestos

containing

PLM Bulk Asbestos Analysis by New York State Department of Health, ELAP Method 198.1,198.4 and 198.6 ("Polarized Light Microscopy and Transmission Electron Microscopy Methods for Identifying and Quantitating Asbestos in Bulk Samples and in Non-Friable Organically Bound Bulk Samples.") or EPA 600/M4-82-020 per 40 CFR 763 (NVLAP Lab Code 200530-0),

ELAP ID No.: 10958

Lab Code 200530-0 for PLM Analysis

PLM Date Analyzed: 5/24/2019

TEM Date Analyzed: 5/29/2019 TEM Analyst: A. Voldbakken

Microscope: Analyst:

Olympus BH-2 #232953

Laboratory Results Approved By: Asbestos Operations Manager or Designee

Mary Dohi

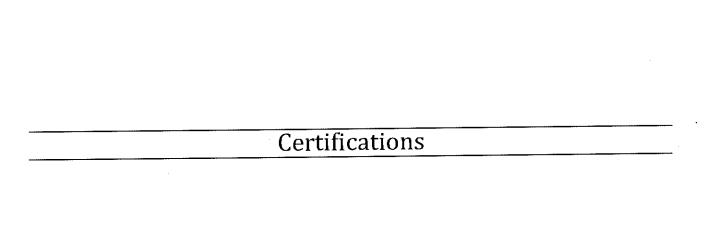
SE ONLY	7 5-6554		of			_	- · · · ·			•	Friability	A.F.	U	メゲ	0	NT T	4			ر شد رسو	Þ	ONLY	×	Estimated at 31	ed personnel
OFFICE USE ONLY		i# gor	Page 6		Date Logged In 5.21-19	-	Logged In By:é	100 9 7 7 044	112		Material	1) my wari	Spickle	7	2012	ding Master	200	Man Plasta	WR	28	COL	BULKS ONLY	NOBS	Estin	rained and authorize
S	,	oN ×			pə		TEM x	4 0)		Size				-							×	RM TEM ON	RVEY:	handled by t
S ANALYSI	lane.	YES	Jbogdan@cscos.com	505	5 x Immed	•	NOB x	2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -) 1		Color	S Z	153	ري و	上世メ	MAJ	29	SWIT-	685	[<u>7</u>	Jay 9	SURVEY	TICALLY PERFOR	SAMPLES IN SUI	and should only be
FOR PLM ASBESTOS ANALYSIS	Contact: Jerel Bogdan	SEND ANALYTICAL DATA TO CLIENT: Eav Number or email address:	Jbogdan	Turn Around Time:	1 2 3	Material Type/Quanitity:	Friable x	Project Number:			Do not Analyze						-					CHECK ONE:	CHECK TO AUTOMATICALLY PERFORM TEM ON NOBS or provide TEM contact name:	TOTAL NUMBER OF SAMPLES IN SURVEY:	is a known carcinogen aisease Hazard)
CHAIN OF CUSTODY FOR PI	Client: C & S Companies		716-867-0823	Results To: CALL Tech x Client x T		Date Sampled:	5/21/19		11 West Ave, Lockport NY 14094	serty	Sampling Location	Pm 1 - sartial wall	ا مائد هه	7.	/ M/	i Ton I vo.	Cerline	1 7		Zm2- certing)	Date: 5/21/19	Date: 5/21/19	Date: 5-21-19 2360	Containerized materials attached to this Chain of Custody may contain Asbestos. Asbestos is a known carcinogen and should only be handled by trained and authorized personnel under regulated conditions. (Danger; May Contain Asbestos Fibers, Cancer and Lung Disease Hazard)
		<u>-</u>	57 Ambrose St, Rochester, NY 14608 585-454.1060 * Fax 585-454.1062		Suffaio NY 14203		5/	LG	641 West Ave, Lockport NY 14094 641 West Ave, Lockpo	cation: Entire Property	Ľ	\$7.808		-	\$ 50 PM	915	\$ S S S S S S S S S S S S S S S S S S S	·			(%)	Sampled by: Geoffrey Siebert	J. 10 (18)		terials attached to this Cha onditions. (Danger; May C
	EN	environment	57 Ambrose St, 585.454.1060	Client Mailing Address:	141 Elm St suite 10	Job Ticket #:	128284	Location:	641 West Ave,	General Location:	Client ID	102/		3 DwV 0		5 1/1/0	6000				10 CM	Sampled by: G	Transported to	1	Containerized ma under regulated c

* Stop positive *

	IN OF	Ontact The Property of the Pro	SANALYSIS	OFFICE USE ONLY	NLY
<u> </u>	Client: C & S Companies	CONTACT: Jerel Bogdan SEND ANALYTICAL DATA TO CLIENT: YES	dan o client: Yes x No	100 # CHG)-19	
	Phone Number: 716-867-0823	Fax Number or email address: Joogdan@cscos	9		
<u> </u>	x Client X	Turn Around Time:			
_Ш	Email: Siebert	1 2 3	5 x Immed	Date Logged In 512 119	7
<u> </u>	Date Sampled:	Material Type/Quanitity:			
72	5/21/19	Frjable x	NOB x TEM x	Logged In By: (🖇	
F	Project Address:	Project Number:	2.01 Q.12	espen	
4	641 West Ave, Lockport NY 14094 641 West Ave, Lockport NY 14094		7	 	
Entire Property	erty				
	Sampling Location	Do not Analyze	Color Size	Material F	Friability
07	Em 2 - INALL		N#I	WPC	TI
	`		S S	WPC	
	- \ગ્લા		J. J. J.	NOC	
_	4 - wall	L. C.	CEN	1896	
d	Rin 5 celling		5年	700	
-	i - railing		ZZ	700	
	white in the		3	oundow Glaze	,
777	Exterior on window		C. R.C.	wi G	
	i around windows	کس و	~ <u>†</u> 3	produce caule	
	Suspenden Bucon	ر ا ا	し土る	ME	V
	1	CHECK ONE:	SURVEY	BULKS ONLY	
1	Date: 5/21/19	CHECK TO AUTOMATICALLY P or provide TEM contact name:	CHECK TO AUTOMATICALLY PERFORM TEM ON NOBS or provide TEM contact name:		×
	Date: 5.2.4	TOTAL NUMBER OF	TOTAL NUMBER OF SAMPLES IN SURVEY:	Estimated at	at 31
				announce beginning to be a beside the beside the second of the besides the second of t	Jennos

Containerized materials attached to this Chain of Custody may contain Asbestos. Asbestos is a known carcinogen and should only be handle under regulated conditions. (Danger; May Contain Asbestos Fibers, Cancer and Lung Disease Hazard)

A STOP PRSITTUE X


																								ee	·
EONLY	, , , , , , , , , , , , , , , , , , ,					22.0				, in the second		Friability	¥	4				4	ANTE	_		`	INLY	×	Estimated at 31
OFFICE USE ONLY	3	Job #:	<u></u>	Page of		Date Logged In 52 11		Logged in By: (ß	<u>z</u>			Material	Nati Caul	143	Cansis	1. Per	acting.	ROFU	ROF	ROF	Roof Tap	RTP	BULKS ONLY	NOBS	Estima
IS		ջ ×				ped		TEM x	Д Д))		Size											×	RM TEM ON	RVEY:
S ANALYS	gdan	TO CLIENT: YES	address:	Jbogdan@cscos.com	5275	5 x Immed	1	NOB x	017C	4		Color	3	を計工	C (24)	30	1200	81K	م آ	8/7	あれて	81C	SURVEY	TICALLY PERFO	SAMPLES IN SU
M ASBESTO	Contact: Jerel Bogdan	SEND ANALYTICAL DATA TO CLIENT:	Fax Number or email address:	Jbogdan	Turn Around Time:	1 2 3	Material Type/Quanitity:	Friable x	Project Number:		•	Do not Analyze									m key	it ware	CHECK ONE:	CHECK TO AUTOMATICALLY PERFORM TEM ON NOBS or provide TEM contact name:	TOTAL NUMBER OF SAMPLES IN SURVEY:
CHAIN GF CUSTODY FOR PLM ASBESTOS ANALYSIS	C & S Companies	SE	-	716-867-0823	CALL Tech x dient x	Siebert		Fr		t Ave, Lockport NY 14094		Sampling Location	el- on wall bandle	- on wall panals	- panels on roof	- panels on rost	7000 rach	- Wheel roof	- HOWAY rack	Tower roof	- or rook actualization	- on roof parapi	5/21/19	5/21/19	5-21-19 17:45
CHAIN	Client:		Phone Number:		Results To:	Email: S	Date Sampled	5/21/19	Project Address	641 West	roperty		Exterior	,			VP					M	Date:	Date:	Date:
•	Y(sultants, inc.	ster, NY 14608	585.454.1062		ffaio NY 14203		÷		oort NY 14094	on: Entire Property	Lab ID	37828	678	834	831	832AB(D	833 ARI DE	834A\$	235 AB	\$3.00 \$3.00	537	Geoffrey Siebert	A P. C.	
	ENVOY	environmental consultants, inc.	57 Ambrose St, Rochester, NY 14608	585.454.1060 * Fax 585.454.1062	Client Mailing Address:	141 Elm St suite 100, Buffaio NY 14203	Job Ticket #:	128284	Location:	641 West Ave, Lockport NY 14094 641 West Ave,	General Location:	Client ID	1 WAC ZI	2 WAC 22	3 TRN 23	4 TRV 29	5/20F 25	"	J	8 ROF 28	9 mg 29	10 Pare 30	Sampled by: Geoffi	Transported to Paradigm By:	Received By: Company

Containerized materials attached to this Chain of Custody may contain Asbestos. Asbestos is a known carcinogen under regulated conditions. (Danger; May Contain Asbestos Fibers, Cancer and Lung Disease Hazard)

& STOP POSITIVE &

OFFICE USE ONLY	v. ronsi	30p#:		Page of	<	Date Logged In 5 6 19		Logged In By: [송	340	3		Material Friability	37 1										BULKS ONLY	NOBS ×	5-2/-1/ 17:05 TOTAL NUMBER OF SAMPLES IN SURVEY: Estimated at 31
SIS		× No			Ĺ	Immed		TEM x	19-0459			Size											×	ORM TEM ON	URVEY:
S ANALYS	jdan	TO CLIENT: YES	address:	Jbogdan@cscos.com	535	5 x Im	::	NOB x	on T			Color	N T										SURVEY	TICALLY PERF act name:	SAMPLES IN S
M ASBESTO	Contact: Jerel Bogdan	SEND ANALYTICAL DATA TO CLIENT:	Fax Number or email address:	Jbogdan	Turn Around Time:	2 3	Material Type/Quanitity:	Friable x	Project Number:			Do not Analyze											CHECK ONE:	CHECK TO AUTOMATICALLY PERFORM TEM ON NOBS or provide TEM contact name:	TOTAL NUMBER OF SAMPLES IN SURVEY:
CHAIN OF CUSTODY FOR PLM ASBESTOS ANALYSIS	Client: C & S Companies Co	SEI	Phone Number:	716-867-0823	Results To: CALL Tech X Client X Tu	Email: Siebert 1	Date Sampled:	5/21/19 Fri		641 West Ave, Lockport NY 14094 641 West Ave, Lockport NY 14094	perty	Sampling Location	RM (- on Arnuall	- - -									Date: 5/21/19 C	Date: 5/21/19	Date: 5-21-19 (7:05)
O	<u> </u>	sultants, inc.		585.454.1062	R			<u>rv</u>	<u>a</u>	port NY 14094 6	on: Entire Property	Lab ID	37838			,							Geoffrey Siebert	K R G	
	ENVOY	environmental consultants, inc.	57 Ambrose St, Rochester, NY 14608	585.454.1060 * Fax 585.454.1062	Client Mailing Address:	141 Elm St suite 100, Buffalo NY 14203	Job Ticket #:	128284	Location:	641 West Ave, Lock	General Location:	Client ID	15016-31	2	3	4	2	9	7	8	6	10	Sampled by: Geoff	Transported to Paradiam Bv:	Received By: しゃいいっぱい

Containenzed materials attached to this Chain of Custody may contain Aspestos. Aspessos is a nitumity under regulated conditions. (Danger; May Contain Asbestos Fibers, Cancer and Lung Disease Hazard)

New York State - Department of Labor

Division of Safety and Health License and Certificate Unit State Campus, Building 12 Albany, NY 12240

ASBESTOS HANDLING LICENSE

Envoy Environmental Consultants Inc.

57 Ambrose Street

Rochester, NY 14608

FILE NUMBER: 02-0527 LICENSE NUMBER: 28454 LICENSE CLASS: RESTRICTED DATE OF ISSUE: 05/24/2018

EXPIRATION DATE: 06/30/2019

Duly Authorized Representative - Paul Mahoney:

This license has been issued in accordance with applicable provisions of Article 30 of the Labor Law of New York State and of the New York State Codes, Rules and Regulations (12 NYCRR Part 56). It is subject to suspension or revocation for a (1) serious violation of state, federal or local laws with regard to the conduct of an asbestos project, or (2) demonstrated lack of responsibility in the conduct of any job involving asbestos or asbestos material.

This license is valid only for the contractor named above and this license or a photocopy must be prominently displayed at the asbestos project worksite. This license verifies that all persons employed by the licensee on an asbestos project in New York State have been issued an Asbestos Certificate, appropriate for the type of work they perform, by the New York State Department of Labor.

Eileen M. Franko, Director For the Commissioner of Labor

SH 432 (8/12)

NEW YORK STATE DEPARTMENT OF HEALTH WADSWORTH CENTER

Expires 12:01 AM April 01, 2020 Issued April 01, 2019

NY Lab Id No: 10958

CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE

issued in accordance with and pursuant to section 502 Public Health Law of New York State

MR. STEVE DEVITO PARADIGM ENVIRONMENTAL SERVICES INC 179 LAKE AVENUE ROCHESTER, NY 14608

is tiereby APPROVED as an Environmental Laboratory for the category ENVIRONMENTAL ANALYSES SOLID AND HAZARDOUS WASTE All approved subcategories and/or analytes are listed below:

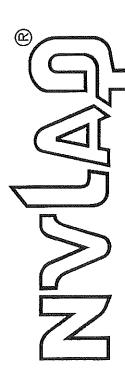
Miscellaneous

Asbestos in Friable Material Item 198.1 of Manual EPA 600/M4/82/020

Asbestos in Non-Friable Material-PLM Item 198,6 of Manual (NOB by PLM)

Asbestos in Non-Friable Material-TEM Item 198.4 of Manual

Lead in Dust Wipes EPA 6010C
Lead in Paint EPA 6010C


Sample Preparation Methods

EPA 3050B

Serial No.: 59505

Property of the New York State Department of Health. Certificates are valid only at the address shown, must be conspicuously posted, and are printed on secure paper. Continued accreditation depends on successful ongoing participation in the Program. Consumers are urged to call (518) 485-5570 to verify the laboratory's accreditation status.

United States Department of Commerce National Institute of Standards and Technology

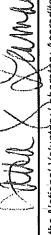
Certificate of Accreditation to ISO/IEC 17025:2005

NVLAP LAB CODE: 200530-0

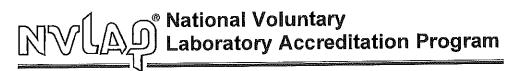
Paradigm Environmental Services, Inc.

Rochester, NY

is accredited by the National Voluntary Laboratory Accreditation Program for specific services, listed on the Scope of Accreditation, for:


Asbestos Fiber Analysis

This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005. management system (refer to joint ISO-ILAC-IAF Communique dated January 2009).


2018-07-01 through 2019-06-30

Effective Dates

For the National Voluntax Laboratox Accreditation Program

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2005

Paradigm Environmental Services, Inc.

179 Lake Avenue Rochester, NY 14608 Ms. Rebecca Roztocil

Phone: 585-647-2530 Fax: 585-647-3311 Email: rroztocil@paradigmenv.com http://www.paradigmenv.com

ASBESTOS FIBER ANALYSIS

NVLAP LAB CODE 200530-0

Bulk Asbestos Analysis

Code

Description

18/A01

EPA -- 40 CFR Appendix E to Subpart E of Part 763, Interim Method of the Determination of

Asbestos in Bulk Insulation Samples

18/A03

EPA 600/R-93/116: Method for the Determination of Asbestos in Bulk Building Materials

Airborne Asbestos Analysis

<u>Code</u>

Description

18/A02

U.S. EPA's "Interim Transmission Electron Microscopy Analytical Methods-Mandatory and Nonmandatory-and Mandatory Section to Determine Completion of Response Actions" as found in

40 CFR, Part 763, Subpart E, Appendix A.

For the National Voluntary Laboratory Accreditation Program

STATE OF NEW YORK - DEPARTMENT OF LABOR ASBESTOS CERTIFICATE

N.Y.S

GEOFFREY R SIEBERT CLASS(EXPIRES) C ATEC(08/19) D INSP(08/19) H PM (08/19)

> CERT# 03-06811 DMV# 367209545

MUST BE CARRIED ON ASBESTOS PROJECTS

Prepared for: C & S Companies 141 Elm Street, Suite 100 Buffalo, New York 14203 19-0459

Limited XRF Lead-Based Paint Inspection

641 West Avenue Lockport, New York 14094

TABLE OF CONTENTS

1.0	Executive Summary	Page 2
2.0	Introduction	Page 3
3.0	Definitions	Page 5
4.0	Limitations	Page 7
5.0	Conclusions	Page 8

Appendix A	XRF Summary of Lead-Based Paint Readings
Appendix B	XRF Sequential Instrument Data
Appendix C	Drawings
Appendix D	
Appendix E	Performance Characteristic Sheets
Appendix F	Certifications

1.0 Executive Summary

- A limited XRF lead-based paint inspection was performed at 641 West Avenue, Lockport, New York. The inspection was conducted on May 21, 2019.
- Lead-based paint was identified on five (5) of the surfaces tested. These results can be found in Appendix A "XRF Summary of Lead-Based Paint Readings" of this report.
- Test locations were chosen by the onsite client representative to gain knowledge of locations of Lead-Based Paint.
- Testing is limited to the specific components identified in this report and does not represent painting histories in other portions of the facility.

2.0 Introduction

Paradigm Environmental Services, Inc. (Paradigm) was retained by C & S Companies on May 21, 2019 to conduct a limited inspection for the presence of lead-based paints through X-Ray Fluorescence (XRF) analysis at 641 West Avenue, Lockport, New York. Field services and survey reports were generated by Envoy Environmental Consultants, Inc. (Envoy) as a subcontractor to Paradigm. Envoy Certified Lead Inspector, Geoff Siebert conducted this inspection with the procedures and guidelines set forth by state and federal regulatory agencies. The property construction date is unknown. The predominant construction materials observed were metal, wood, plaster, ceramic and block.

Envoy holds a New York State Department of Health Radioactive Materials License to own and operate an X-Ray Fluorescence (XRF) lead paint analyzer. We have been certified under TSCA Section 402(a)(1) allowing the company to conduct Lead-based paint activities pursuant to 40 CFR Part 745.226. The inspection was conducted from approximately 11:00 a.m. to approximately 12:00 p.m..

All lead-based paint inspections are performed in accordance with Chapter 7 of The U.S. Department of Housing and Urban Development Guidelines (USHUD), and the U.S. Environmental Protection Agency, since they are the only regulatory agencies defining procedures for conducting XRF lead-based paint inspections. Paint is categorized as lead-based if the XRF analyzer registers a reading of 1.0 mg/cm² or above, according to the USHUD standard. Envoy reports lead-based paint levels in mg/cm² because this unit of measurement does not depend on the number of layers of non-lead-based paint and can usually be obtained without damaging the painted surfaces. Positive, negative, and inconclusive XRF readings are determined in accordance with the XRF instruments Performance Characteristic Sheets as described by the HUD Guidelines.

Envoy owns and operates a RMD LPA-1 Lead Paint Analyzer. The serial number of this instrument is 2829 and was sourced on February 16, 2018. The LPA-1 Lead Paint Analyzer is an analytical radiation instrument used in quantitative analysis of lead in paint for various substrates. The LPA-1 is a spectrum analyzer that resolves the lead X-Ray intensity from interfering radiation. The XRF LPA-1 instrument has a $^3/_8$ inch penetration depth for the detection of lead. Anything beyond this depth will cause no reading and can go undetected. A radioactive material, Cobalt 57, is used as the radiation source in this device for nondestructive method of sample analysis.

For each room, hallway, or exterior site to be inspected, testing combinations are identified based on the inspectors training. A testing combination represents the room equivalent, the component type, and the substrate. A room equivalent is an identifiable part of a building (e.g., office, hallway, basement, etc.). Painted surfaces include any surface coated with paint, shellac, varnish, stain, paint covered by wallpaper, or any other coating.

USHUD Guidelines recommend classifying substrates into one of the six substrate types listed in Table 1. Additionally, certain substrates may register a reading on the XRF lead paint analyzer in the inconclusive range.

Table 1

Substrate	Inconclusive Range
Brick	None
Concrete	None
Drywall	None
Metal	0.9 to 1.3 mg/cm ²
Plaster	0.9 to 1.3 mg/cm ²
Wood	None

When the XRF lead paint analyzer registers a reading in the inconclusive range, or a substrate cannot be tested due to irregular size and shape, the Certified Lead Inspector is then required to collect a paint chip sample to determine the presence of lead. If paint chip samples are collected, lead-based paint is present when the concentration is 0.5 percent by weight or above. The inspection conducted at this location did not register any readings in the inconclusive range.

Contractors shall be aware the XRF device is used for non-residential inspections as a screening tool only. According to U.S. Department of Labor Occupational Safety and Health Administration (OSHA), personal air monitoring results must be used to clearly demonstrate that employees will not be exposed at, or above, the lead action level during any process, operation, or activity

3.0 Definitions

Abatement: A measure or set of measures designed to permanently eliminate lead-based paint hazards or lead-based paint. Abatement strategies include the removal of lead-based paint, enclosure, encapsulation, replacement of building components coated with lead-based paint, removal of lead-contaminated dust, and removal of lead-contaminated soil or overlaying of soil with a durable covering such as asphalt (grass and sod are considered interim control measures). All of these strategies require preparation; cleanup; waste disposal; post abatement clearance testing; recordkeeping; and, if applicable, monitoring.

<u>Deteriorated lead-based paint:</u> Any lead-based paint coating on a damaged or deteriorated surface or fixture, or any interior or exterior lead-based paint that is peeling, chipping, blistering, flaking, worn, chalking, alligatoring, cracking, or otherwise becoming separated from the substrate.

Encapsulation: Any covering or coating that acts as a barrier between lead-based paint and the environment, the durability of which relies on adhesion and the integrity of the existing bonds between multiple layers of paint and between the paint and the substrate.

<u>Friction surface:</u> An interior or exterior surface that is subject to abrasion or friction, including, but not limited to, certain window, floor, and stair surfaces.

<u>Impact surface</u>: An interior or exterior surface that is subject to damage by repeated sudden force such as certain parts of door frames.

Interim controls: A set of measures designed to temporarily reduce human exposure or possible exposure to lead-based paint hazards. Such measures include specialized cleaning, repairs, maintenance, painting, temporary containment, and management and resident education programs. Monitoring, conducted by owners, and reevaluations, conducted by professionals, are integral elements of interim control. Interim controls include dust removal; paint film stabilization; treatment of friction and impact surfaces; installation of soil coverings, such as grass or sod; and land-use controls.

<u>USHUD Guidelines</u>: The USHUD Guidelines for the Evaluation and Control of Lead-Based Paint Hazards in Housing (the Guidelines) provide detailed, comprehensive, technical information on how to identify lead-based paint hazards in housing and how to control such hazards safely and efficiently. The goal of the Guidelines is to help property owners, private contractors, and Government agencies sharply reduce children's exposure to lead without unnecessarily increasing the cost of housing.

<u>Lead-based paint</u>: Lead-based paint means paint or surface coatings that contain lead equal to or greater than 1.0 mg/cm² or 0.5 percent by weight. (Equivalent units are: 5,000 μ g/g, 5,000 mg/kg, or 5,000 ppm by weight) Surface coatings include paint shellac, varnish, or any other coating, including wallpaper which covers painted surfaces.

<u>Lead-based paint hazard</u>: A condition in which exposure to lead from lead-contaminated dust, lead-contaminated soil, or deteriorated lead-based paint would have an adverse effect on human health (as established by the EPA Administrator under Title IV of the Toxic Substances Control Act). Lead-based paint hazards include for example, deteriorated lead-based paint, leaded dust levels above applicable standards, and bare leaded soil above applicable standards.

Monitoring: Surveillance to determine (1) that known or suspected lead-based paint is not deteriorating, (2) that lead-based paint hazard controls, such as paint stabilization, enclosure, or encapsulation have not failed, (3) that structural problems do not threaten the integrity of hazard controls or of known or suspected lead-based paint, and (4) that dust lead levels have not risen above applicable standards. There are two types of monitoring activities; visual surveys by property owners and reevaluations by certified risk assessors. Visual surveys are generally conducted annually for the purpose of making the first three determinations listed above.

OSHA: The occupational safety and health administration ensures safe and healthful working conditions for working men and women by setting and enforcing standards and by providing training, outreach, education and assistance. Section 1926.62 targets employee lead exposure during construction activities. The full standard can be found at: http://www.osha.gov/pls/oshaweb/owadisp.show document?p table=STANDARDS&p id=10641

<u>Paint film stabilization</u>: The process of wet scraping, priming, and repainting surfaces coated with deteriorated lead-based paint; paint film stabilization includes cleanup and clearance.

Renovation Repair and Painting Law 40 CFR Part 745: Requires that renovations required for compensation, must be performed by certified firms, using certified renovators. Renovation firms that anticipate on working in pre-1978 homes and child occupied facilities must apply to the EPA and pay a fee in order to be certified. Firms certified in the RRP law must follow lead safe work practices including initial and final lead testing.

<u>Substrate</u>: The substrate is the material underneath the paint. Substrates should be classified into one of six types: brick, concrete, drywall, metal, plaster, or wood. These substrates cover almost all building materials that are painted and are linked to those used in the *XRF Performance Characteristic Sheets*.

<u>Target Housing</u>: Any residential unit constructed before 1978, except dwellings that do not contain bedrooms or dwellings that were developed specifically for the elderly or persons with disabilities—unless a child younger than 6 resides or is expected to reside in the dwelling.

<u>XRF analyzer:</u> An instrument that determines lead concentration in milligrams per square centimeter (mg/cm2) using the principle of x-ray fluorescence (XRF). Two types of XRF analyzers are used—direct readers and spectrum analyzers. In the *HUD Guidelines*, the term XRF analyzer only refers to portable instruments manufactured to analyze paint, and does not refer to laboratory-grade units or portable instruments designed to analyze soil.

Source: USHUD Guidelines

4.0 Limitations

The information provided in this report was compiled from field notes, instrument data, and visual assessment. Observations noted and recorded are intended to represent the conditions that existed at the subject site at the time and date that the observations were made.

All surfaces tested have been assigned a paint condition. These designations are either intact, or deteriorated. Areas where deteriorated paint was observed (peeling, chipping, flaking and chalking) is considered to be a lead hazard. Surfaces with these designations have been categorized by the inspector using letter "D" for deteriorated. These conditions have been recorded in the Summary and Sequential Page of this report. Locations where lead-based paint has been observed intact by the inspector at the time of inspection have been distinguished with the letter "I".

Determinations of lead-based paint within the facility were subject to the accessibility of individual areas or spaces. In some cases areas were inaccessible due to unforeseen safety issues or height constraints. Testing surfaces were assigned the letters A, B, C, or D for purposes of reading this report and understanding which wall in a particular building was sampled. The substrate regarded as "A" will always be the address side wall of the facility. Walls B, C, and D shall follow clockwise in succession.

The results of this inspection are applicable to the specified buildings on the date(s) indicated in this report. Future activities at these buildings may alter the results of this report. Test locations were chosen by the onsite client representative to gain knowledge of locations of Lead-Based Paint. This inspection does not meet the conditions of a surface by surface investigation as defined by HUD. Testing is limited to the specific components identified in this report and does not represent painting histories in other portions of the building.

5.0 Conclusions

A limited XRF lead-based paint inspection was performed by Envoy at 641 West Avenue, Lockport, New York. The inspection was conducted on May 21, 2019.

The inspection identified five (5) applications of lead-based paint applied to the surfaces tested.

The Summary page for XRF data is located in Appendix A. This summary includes all positive lead-based paint readings, which indicate the components that were determined to have instrument readings at or over the HUD abatement level of 1.0 mg/cm². The Sequential page for XRF data is located in Appendix B. This page represents each reading taken by the LPA-1 Lead Paint Analyzer.

A copy of this report will remain on file at Paradigm's main office located at 179 Lake Avenue, Rochester, New York, 14608. EPA rules (40 CFR part 745) require all reports are maintained by the certified firm for no less than 3 years. Paradigm Environmental Services, Inc. appreciates this opportunity to provide these professional lead consulting services. For more information please contact our main office at (585) 647-2530.

Envoy Lead Risk Assessor Ted Tronnes certifies the accuracy of this report on May 28, 2019.

Ted Tronnes

Lead Risk Assessor

Envoy Environmental Consultants, Inc.

Appendix A Lead-Based Paint Summary Report

Our investigation at 641 West Avenue in Lockport, New York resulted with five (5) readings above the HUD/ EPA lead abatement standard of $1.0~\rm mg/cm^2$ in relation to the areas tested. These findings are based specifically on testing combinations selected by the inspector.

All parties shall be aware that any concentration of lead above zero, according to the OSHA standard, shall trigger the requirements set forth in 1926.62.

Interpreting the Summary of Lead Based Paint Inspection Report

EXAMPLE: Interior Room 001 6-1

- Interior Room Interior room
- 001- Number of space/room/area tested. This does not correspond to room number.
- 6 Refers to floor of building tested. In this case, the sixth floor.
- 1 Refers to the room number where testing occurred on the specified floor. In this case, Room 1.

Lead Paint Standards

OSHA: $>0.0 \text{ mg/cm}^2$, or >0.0% by weight

NYS/USHUD: $>/= 1.0 \text{ mg/cm}^2$, or >/= 0.5% by weight

The following page consists of the Summary Report (lead-based paint readings) recorded by the LPA-1 Lead Based Paint Analyzer during the field inspection.

SUMMARY REPORT OF LEAD PAINT INSPECTION FOR: C&S Companies

Inspection Date: Report Date:

05/21/19

5/28/2019

641 West Avenue Lockport, New York 14094

Abatement Level:

1.0

Report No.

S#02829 - 05/21/19 10:49

Total Readings:

38 Actionable: 5

Job Started: Job Finished: 05/21/19 10:49 05/21/19 12:13

Readin	ıq				Paint			Lead	
No.	Wall	Structure	Location	Member	Cond	Substrate	Color	(mg/cm²)	Mode
Exte	rior R	oom 001 1-Ex	terior						
013	D	Door	Lft	U Ctr	I	Wood	White	3.4	МQ
Inte	rior R	oom 004 1-Rm	5						
032	A	Ceiling			I	Plaster	Black	1.5	QM
029	С	Wall	U Ctr		I	Block	White	1.0	ДM
030	D	Wall	L Ctr		I	Block	Blue	2.4	QΜ
031	D	Wall	U Ctr		I	Block	White	2.5	QM
			End of	F Readings					

---- End of Readings

Appendix B XRF Sequential Instrument Data

The Sequential Report on the following pages represents each reading taken by the LPA-1 Lead Based Paint Analyzer. These findings illustrate all testing combinations selected by the inspector including readings above and below the HUD abatement level of $1.0 \, \mathrm{mg/cm^2}$.

Before XRF testing begins, the inspector must ensure the instrument is operating properly. This is performed by calibrating the instrument. Readings on the Sequential Page specified as CALIBRATION are the instruments calibration readings taken before and after each inspection. If an inspection takes longer than 4 hours, CALIBRATION is then performed midshift.

During calibration, three readings are taken on a painted portion of the standard reference material and three readings are taken on the non-painted portion of the standard reference material. The standard reference material used in this inspection is commonly referred to as a NIST (Nation Institute of Standards and Technology) block which is composed of lead paint in the value of $1.0~\rm mg/cm^2$. The last three readings are taken on the back of the NIST block which is composed on a non-painted wood surface providing readings below the HUD/EPA standard of $1.0~\rm mg/cm^2$. These readings typically range from $-0.1~\rm mg/cm^2$ to $0.3~\rm mg/cm^2$.

Once all CALIBRATION readings have been averaged representing successful results using the instruments Performance Characteristic Sheets, the XRF Lead-based inspection can begin.

LEAD PAINT INSPECTION REPORT

REPORT NUMBER: S#02829 - 05/21/19 10:49

INSPECTION FOR: C&S Companies

141 Elm Street, Suite 100 Buffalo, New York 14203

PERFORMED AT: 641 West Avenue

Lockport, New York 14094

INSPECTION DATE: 05/21/19

INSTRUMENT TYPE: R M D MODEL LPA-1

XRF TYPE ANALYZER

Serial Number: 02829

ACTION LEVEL: 1.0 mg/cm²

OPERATOR LICENSE: LBP-R-I166851-1

Envoy Environmental Consultants, Inc. 57 Ambrose Street Rochester, New York 14608

SIGNED:

Geoff Siebert

SEQUENTIAL REPORT OF LEAD PAINT INSPECTION FOR: C&S Companies

Inspection Date:

05/21/19

641 West Avenue

Report Date:

5/28/2019

Lockport, New York 14094

Abatement Level:

1.0

Report No.

S#02829 - 05/21/19 10:49

Total Readings:

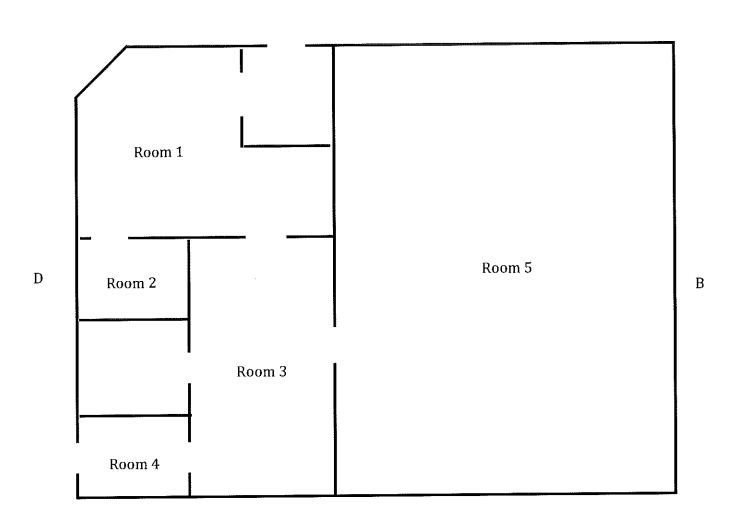
38

Job Started: Job Finished: 05/21/19 10:49

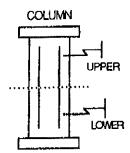
05/21/19 12:13

Read Rm		Room					Paint			Lead	
No.	No.	Name	Wall	Structure	Location	Member	Cond	Substrate	Color	(mg/cm²)	Mode
1		CALIBRATION								0.8	TC
2		CALIBRATION								0.7	TC
3		CALIBRATION								0.7	TC
4		CALIBRATION								-0.2	TC
5		CALIBRATION								-0.5	TC TC
6		CALIBRATION					_			-0.2	
7		1-Exterior	A	Wall	υct			Metal	Yellow		QM
8		1-Exterior	В	Wall	U Ct			Metal	Yellow		QM
9	001	1-Exterior	В	Window		r Sash		Metal	Red	-0.1	QM
10	001	1-Exterior	В	Door		r U Ctr		Wood	White	-0.1	QM
11	001	1-Exterior	D	Door	_	t U Ctr		Wood	White	-0.2	QM
12	001	1-Exterior	D	Door	-	t Rgt cas:	_	Wood	White	-0.3	QM OM
13	001	1-Exterior	D	Door		t U Ctr		Wood	White	3.4	QM
14	001	1-Exterior	D	Wall	U Ct	r		Metal	Yellow		QM
15	001	1-Rm 1	A	Floor				Cement	Red	-0.6	QM
16	001	1-Rm 1	С	Wall	υct	r		Plaster	Blue	-0.3	QM
17	002	1-Rm 2	A	Wall	U Ct	r		Plaster	Blue	-0.3	QM
16	002	1-Rm 2	В	Wall	υ ct	r		Plaster	Blue	-0.5	QM
19	002	1-Rm 2	С	Wall	υct	r		Plaster	Blue	-0.2	QM
20	002	1-Rm 2	C	Toilet	Ct	r	_	Ceramic	White	-0.5	QM
21	. 002	1-Rm 2	C	Sink	Ct	r		Ceramic	White	-0.6	QM
22	003	1-Rm 3	В	Wall	L Ct	r	I	Block	Blue	-0.4	QM
23	003	1-Rm 3	В	Wall	U Ct	r		Block	White	-0.2	QM
24	003	1-Rm 3	D	Wall	L Ct	r	I	Block	Blue	-0.3	QM
25	003	1-Rm 3	D	Wall	υct	r	I	Block	White	-0.2	QM
26	004	1-Rm 5	A	Wall	L Ct	r	I	Block	Blue	0.2	QM
27	004	1-Rm 5	A	Wall	υct	r	I	Block	White	0.3	QM
28	004	1-Rm 5	С	Wall	L Ct	r	I	Block	Black	0.1	QM
29	004	1-Rm 5	C	Wall	U Ct	r	I	Block	White	1.0	QM
30	004	1-Rm 5	D	Wall	L Ct	ř		Block	Blue	2.4	QM
31	. 004	1-Rm 5	D	Wall	u ct	r	I	Block	White	2.5	QM
32	004	1-Rm 5	A	Ceiling			I	Plaster	Black	1.5	QM
33	3	CALIBRATION	Ī							0.9	TC
34	ļ	CALIBRATION	Ī							0.9	TC
35	5	CALIBRATION	ſ							0.9	TC
36	5	CALIBRATION	ſ							-0.2	TC
37	,	CALIBRATION	Ī							-0.2	TC
38	3	CALIBRATION	Ī							-0.2	TC

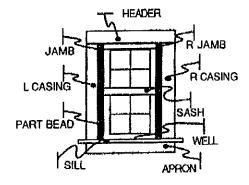
SEQUENTIAL REPORT OF LEAD PAINT INSPECTION FOR: C&S Companies

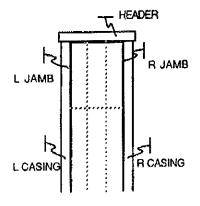

Read No.	Room Name	Wall Structure	Location	Member	Paint Cond Substrate	Color	Lead (mg/cm²) Mode

Client: C & S Companies

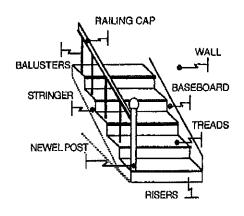

Location: 641 West Avenue, Lockport, New York Work Performed: Limited XRF LBP Inspection

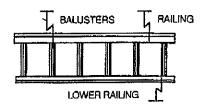
Date: May 21, 2019 Job Number: 19-0459


Α

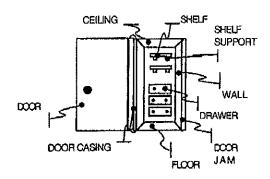

XRF Component Identification Sheet

Column Components




Window Components

Door Components


XRF Component Identification Sheet

Railing Components

Staircase Components

Closet Components

Performance Characteristic Sheet

EFFECTIVE DATE:

December 1, 2006

EDITION NO.: 5

MANUFACTURER AND MODEL:

Make:

Radiation Monitoring Devices

Model:

LPA-1 ⁵⁷Co

Source: Note:

This sheet supersedes all previous sheets for the XRF instrument of the make, model, and source shown above *for instruments sold or serviced after June*

26, 1995. For other instruments, see prior editions.

FIELD OPERATION GUIDANCE

OPERATING PARAMETERS:

Quick mode or 30-second equivalent standard (Time Corrected) mode readings.

XRF CALIBRATION CHECK LIMITS:

0.7 to 1.3 mg/cm² (inclusive)

SUBSTRATE CORRECTION:

For XRF results below 4.0 mg/cm², substrate correction is recommended for:

Metal using 30-second equivalent standard (Time Corrected) mode readings. None using quick mode readings.

Substrate correction is not needed for:

Brick, Concrete, Drywall, Plaster, and Wood using 30-second equivalent standard (Time Corrected) mode readings

Brick, Concrete, Drywall, Metal, Plaster, and Wood using quick mode readings

THRESHOLDS:

30-SECOND EQUIVALENT STANDARD MODE READING DESCRIPTION	SUBSTRATE	THRESHOLD (mg/cm²)
	Brick	1.0
Results corrected for substrate bias	Concrete	1.0
on metal substrate only	Drywall	1.0
J	Metal	0.9
	Plaster	1.0
	Wood	1.0

QUICK MODE READING DESCRIPTION	SUBSTRATE	THRESHOLD (mg/cm²)
	Brick	1.0
Readings not corrected for substrate bias	Concrete	1.0
on any substrate	Drywall	1.0
on any substitute	Metal	1.0
,	Plaster	1.0
	Wood	1.0

BACKGROUND INFORMATION

EVALUATION DATA SOURCE AND DATE:

This sheet is supplemental information to be used in conjunction with Chapter 7 of the HUD *Guidelines* for the Evaluation and Control of Lead-Based Paint Hazards in Housing ("HUD Guidelines"). Performance parameters shown on this sheet are calculated from the EPA/HUD evaluation using archived building components. Testing was conducted on approximately 150 test locations in July 1995. The instrument that performed testing in September had a new source installed in June 1995 with 12 mCi initial strength.

OPERATING PARAMETERS:

Performance parameters shown in this sheet are applicable only when properly operating the instrument using the manufacturer's instructions and procedures described in Chapter 7 of the HUD Guidelines.

XRF CALIBRATION CHECK:

The calibration of the XRF instrument should be checked using the paint film nearest 1.0 mg/cm² in the NIST Standard Reference Material (SRM) used (e.g., for NIST SRM 2579, use the 1.02 mg/cm² film).

If readings are outside the acceptable calibration check range, follow the manufacturer's instructions to bring the instruments into control before XRF testing proceeds.

SUBSTRATE CORRECTION VALUE COMPUTATION:

Chapter 7 of the HUD Guidelines provides guidance on correcting XRF results for substrate bias. Supplemental guidance for using the paint film nearest 1.0 mg/cm² for substrate correction is provided:

XRF results are corrected for substrate bias by subtracting from each XRF result a correction value determined separately in each house for single-family housing or in each development for multifamily housing, for each substrate. The correction value is an average of XRF readings taken over the NIST SRM paint film nearest to 1.0 mg/cm² at test locations that have been scraped bare of their paint covering. Compute the correction values as follows:

Using the same XRF instrument, take three readings on a <u>bare</u> substrate area covered with the NIST SRM paint film nearest 1 mg/cm². Repeat this procedure by taking three more readings on a second <u>bare</u> substrate area of the same substrate covered with the NIST SRM.

Compute the correction value for each substrate type where XRF readings indicate substrate correction is needed by computing the average of all six readings as shown below.

For each substrate type (the 1.02 mg/cm² NIST SRM is shown in this example; use the actual lead loading of the NIST SRM used for substrate correction):

Correction value =
$$(1^{st} + 2^{nd} + 3^{rd} + 4^{th} + 5^{th} + 6^{th} Reading) / 6 - 1.02 mg/cm2$$

Repeat this procedure for each substrate requiring substrate correction in the house or housing development.

EVALUATING THE QUALITY OF XRF TESTING:

Randomly select ten testing combinations for retesting from each house or from two randomly selected units in multifamily housing. Use either the Quick Mode or 30-second equivalent standard (Time Corrected) Mode readings.

Conduct XRF re-testing at the ten testing combinations selected for retesting.

Determine if the XRF testing in the units or house passed or failed the test by applying the steps below.

Compute the Retest Tolerance Limit by the following steps:

Determine XRF results for the original and retest XRF readings. Do not correct the original or retest results for substrate bias. In single-family and multi-family housing, a result is defined as a single reading. Therefore, there will be ten original and ten retest XRF results for each house or for the two selected units.

Calculate the average of the original XRF result and retest XRF result for each testing combination.

Square the average for each testing combination.

Add the ten squared averages together. Call this quantity C.

Multiply the number C by 0.0072. Call this quantity D.

Add the number 0.032 to D. Call this quantity E.

Take the square root of E. Call this quantity F.

Multiply F by 1.645. The result is the Retest Tolerance Limit.

Compute the average of all ten original XRF results.

Compute the average of all ten re-test XRF results.

Find the absolute difference of the two averages.

If the difference is less than the Retest Tolerance Limit, the inspection has passed the retest. If the difference of the overall averages equals or exceeds the Retest Tolerance Limit, this procedure should be repeated with ten new testing combinations. If the difference of the overall averages is equal to or greater than the Retest Tolerance Limit a second time, then the inspection should be considered deficient.

Use of this procedure is estimated to produce a spurious result approximately 1% of the time. That is, results of this procedure will call for further examination when no examination is warranted in approximately 1 out of 100 dwelling units tested.

BIAS AND PRECISION:

Do not use these bias and precision data to correct for substrate bias. These bias and precision data were computed without substrate correction from samples with reported laboratory results less than 4.0 mg/cm² lead. The data which were used to determine the bias and precision estimates given in the table below have the following properties. During the July 1995 testing, there were 15 test locations with a laboratory-reported result equal to or greater than 4.0 mg/cm² lead. Of these, one 30-second standard mode reading was less than 1.0 mg/cm² and none of the quick mode readings were less than 1.0 mg/cm². The instrument that tested in July is representative of instruments sold or serviced after June 26, 1995. These data are for illustrative purposes only. Actual bias must be determined on the site. Results provided above already account for bias and precision. Bias and precision ranges are provided to show the variability found between machines of the same model.

30-SECOND STANDARD MODE READING MEASURED AT	SUBSTRATE	BIAS (mg/cm²)	PRECISION* (mg/cm²)
0.0 mg/cm ²	Brick	0.0	0.1
	Concrete	0.0	0.1
	Drywall	0.1	0.1
	Metal	0.3	0.1
	Plaster	0.1	0.1
	Wood	0.0	0.1
0.5 mg/cm ²	Brick	0.0	0.2
	Concrete	0.0	0.2
	Drywall	0.0	0.2
	Metal	0.2	0.2
	Plaster	0.0	0.2
	Wood	0.0	0.2
1.0 mg/cm ²	Brick	0.0	0.3
	Concrete	0.0	0.3
	Drywall	0.0	0.3
	Metal	0.2	0.3
	Plaster	0.0	0.3
	Wood	0.0	0.3
2.0 mg/cm ²	Brick	-0.1	0.4
	Concrete	-0.1	0.4
	Drywall	-0.1	0.4
	Metal	0.1	0.4
	Plaster	-0.1	0.4
	Wood	-0.1	0.4

^{*}Precision at 1 standard deviation.

CLASSIFICATION RESULTS:

XRF results are classified as positive if they are greater than the upper boundary of the inconclusive range, and negative if they are less than the lower boundary of the inconclusive range, or inconclusive if in between. The inconclusive range includes both its upper and lower bounds. Earlier editions of this XRF Performance Characteristic Sheet did not include both bounds of the inconclusive range as "inconclusive." While this edition of the Performance Characteristics Sheet uses a different system, the specific XRF readings that are considered positive, negative, or inconclusive for a given XRF model and substrate remain unchanged, so previous inspection results are not affected.

DOCUMENTATION:

An EPA document titled *Methodology for XRF Performance Characteristic Sheets* provides an explanation of the statistical methodology used to construct the data in the sheets, and provides empirical results from using the recommended inconclusive ranges or thresholds for specific XRF instruments. For a copy of this document call the National Lead Information Center Clearinghouse at 1-800-424-LEAD. A HUD document titled *A Nonparametric Method for Estimating the 5th and 95th Percentile Curves of Variable-Time XRF Readings Based on Monotone Regression* provides supplemental information on the methodology for variable-time XRF instruments. A copy of this document can be obtained from the HUD lead web site, www.hud.gov/offices/lead.

This XRF Performance Characteristic Sheet was developed by QuanTech, Inc., under a contract from the U.S. Department of Housing and Urban Development (HUD). HUD has determined that the information provided here is acceptable when used as guidance in conjunction with Chapter 7, Lead-Based Paint Inspection, of HUD's Guidelines for the Evaluation and Control of Lead-Based Paint Hazards in Housing.

Antied States Entironnmental Aretical Agency

The set of the latest the second seco

Envoy Environmental Consultants, Inc.

has fulfilled the requirements of the Toxic Substances Control Act (TSCA) Section 402, and has received certification to conduct lead-based paint activities pursuant to 40 CFR Part 745,226

All EPA Administered Lead-based Paint Activities Program States, Tribes and Territories

This certification is valid from the date of issuance and expires May 03, 2021

LBP-2017-1

Certification #

March 13, 2018

Issued On



make Due

Michelle Price, Chief

Lead, Heavy Metals, and Inorganics Branch

Commendation Restificate of \

For Radiation Safety

ENVOY ENVIRONMENTAL

CONSULTANTS INC

460 STATE ST STE 205

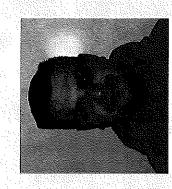
ROCHESTER, NY 14608

Has shown exceptional concern for the health and well-being of its employees and visitors.

Global Dosimetry Solutions, Inc. certifies that since 05/25/2003, occupational radiation

Management is to be commended for maintaining a radiation safe working environment. dosinneters have been provided for those employees and areas monitored at this facility.

Radiation monttoring services provided by:


GLOBAL DOSIMETRY SOLUTIONS, INC. (Formerly ICN Dosimetry Service)

Costa Mesa, CA 92626 USA 3300 Hyland Avenue

Buthorized by: —

Sandi Nemecek

Anited States Environmental Protection Agency Olis is to certify that

Geoffrey R Siebert

has fulfilled the requirements of the Toxic Substances Control Act (TSCA) Section 402, and has received certification to conduct lead-based paint activities pursuant to 40 CFR Part 745.226 as:

Risk Assessor

In the Jurichickfan ak:

All EPA Administered Lead-based Paint Activities Program States, Tribes and Territories

This certification is valid from the date of issuance and expires. August 31, 2019

John Gorman, Chief

Pesticides & Toxic Substances Branch

_BP-R-I166851-1

August 17, 2016 Certification # Issued On

APPENDIX F Applus RTD Geophysical Survey Report

FINAL REPORT Geophysical Survey 641 West Avenue Lockport, New York

Prepared for C&S Engineers 141 Elm Street Buffalo, New York 14203

Prepared by
Applus RTD
80 Lawrence Bell Dr.
Buffalo, New York 14221

5/24/2019

Applus RTD Work Order Number: 07.026742/001

Quote Number: 192764

_	AF	5 1			_ /	_	\sim	117			
T.	ΑĿ	ЗL	E	O	F (C	OI	NΠ	ΓΕΙ	NΠ	ГS

1	INTRODUCTION1-1									
2	SURV	SURVEY METHODOLOGY2-								
	2.1	ELECTR	ROMAGNETIC INDUCTION (EM)	2-1						
		2.1.1	Description	2-1						
		2.1.2	Field Design							
	2.2	GROUN	ID PENETRATING RADAR							
		2.2.1	Description							
		2.2.2	Field Design							
	2.3		DETECTION (RD)							
		2.3.1	Description							
		2.3.2	Field Design							
		2.3.3	Quality Control							
3			JLTS	_						
4										
5	LIMIT	TATIONS) 	5-1						
			LIST OF FIGURES							
Figur	·e			Page						
Figure	3-1 Map	o of Integ	rated Results	3-2						
Figure	3-2: Ma	p of Integ	grated Results With EM Data	3-3						
Figure	3-3 Site	Condition	ns	3-4						
Figure	3-4 Site	Condition	ns: Showing Locations of USTs	3-4						
Figure	3-5 Site	Condition	ns: Showing Location Gas Line as Marked-in-Field	3-5						
Figure	3-6 Eas	t West GF	PR Transect. Crossing 3 USTs – Shown in Red in Bottom	3-5						

1 INTRODUCTION

On April 18th, 2019 Applus RTD conducted a geophysical investigation at a former petroleum station site located at 641 West Avenue in Lockport, New York. The goal of the project was to determine the presence or absence of potential underground storage tanks (USTs) within the defined area of interest at the project site. An additional goal of the survey was to delineate, in the field, locations of utilities that could impact the proposed drilling program. The geophysical techniques of Electromagnetic Induction (EM), Ground Penetrating Radar (GPR), and RadioDetection (RD) were used on the site to characterize the subsurface conditions. The following sections provide a detailed analysis of the work performed and the results obtained from the geophysical investigation.

2 SURVEY METHODOLOGY

2.1 ELECTROMAGNETIC INDUCTION (EM)

2.1.1 Description

The electromagnetic induction (EM) method was used to characterize the subsurface conductivity and to determine the likely presence of buried metallic objects, namely large diameter pipes in the subsurface. The method (and instrument) work by transmitting a primary magnetic field into the ground which subsequently creates electrical current in the ground. This current flows into a conductor (e.g., soil layer or metal object) and is known as an eddy current. These eddy currents generate a secondary magnetic field, which is then measured by the instrument and used to determine the conductivity of the Earth or presence of metal material.

The Geonics EM61-MK2A, a time domain EM instrument, was utilized for this investigation. The EM61-MK2A is a high sensitivity, high resolution, time domain metal detector suitable for the detection of both ferrous and non-ferrous metal. Time domain instruments are capable of transmitting and recording various time gates within the EM signal response. Soil conditions are an important in how deep and EM signal will penetrate.

The EM instrument records response in three time gates and a differential response. In the differential mode, three gates of bottom coil response are recorded at 216, 366, and 660 μ s, with one gate of top coil response at 660 μ s. The benefits of calculating differential response data are to reduce or remove the effects of noise associated with small near-surface metal. The EM response is measured in units of mV (millivolt).

2.1.2 Field Design

The design of the EM survey was set up to cover the entire accessible portion of each of the AOIs. A Global Position System (GPS) was interfaced with the Geonics EM61-MK2A. A nominal line spacing of approximately four feet was used to cover the survey area. Sampling frequency was set at 0.1 Hz (samples/second) which equates to a data point approximately every $\frac{1}{2} - 1$ foot with normal walking pace. The instrument was calibrated (nulled) according to manufacturer's instructions.

2.2 GROUND PENETRATING RADAR

2.2.1 Description

GPR surveys were performed using Geophysical Survey Systems, Inc. (GSSI) Dual Frequency (DF) GPR unit. The unit contains two center frequencies of 300 and 800 MHz with target depths of investigation from 15 feet to 4 feet respectively. The DF unit is a multi-channel unit that automatically displays, processes, and records cross-sectional variable color profiles of subsurface materials.

The GPR method uses high frequency radio waves to acquire relatively shallow subsurface information. Short pulses of electromagnetic energy are radiated downward into the subsurface from the transmitting antenna. A portion of the energy is reflected back to the receiving portion of the antenna, where the control unit continuously processes variations in the reflected signal, and such is graphically displayed. The amplitude and frequency of the reflected signals are caused by variations in electrical properties of subsurface materials (utilities). Reflections are produced whenever the energy pulse travels through a material with different electrical conduction properties or dielectric permittivity than from which it originated. Strength and amplitude of the reflection is determined by the difference in the dielectric constants and conductivities of the two materials.

The ability of the GPR system to resolve buried targets depends on the physical size and relative dielectric contrast of an object/feature with respect to the surrounding material dielectric properties. Detection capability also depends on the frequency of the antenna used. Higher frequency antennas will be able to "detect" smaller targets; however, are limited to shallow depths. Low frequency antennas are able to "detect" larger targets to greater depths. Consequently, not every subsurface feature can be identified using the GPR method.

2.2.2 Field Design

For this survey, the GPR system was set to a dielectric constant suitable for the survey medium. Based on site conditions, a dielectric constant of "8" (which corresponds to soil type, etc.) was used for the survey profiles. GPR profiles were collected at approximately 3 foot intervals along and across the long accessible portions of the area of interest.

2.3 RADIODETECTION (RD)

2.3.1 Description

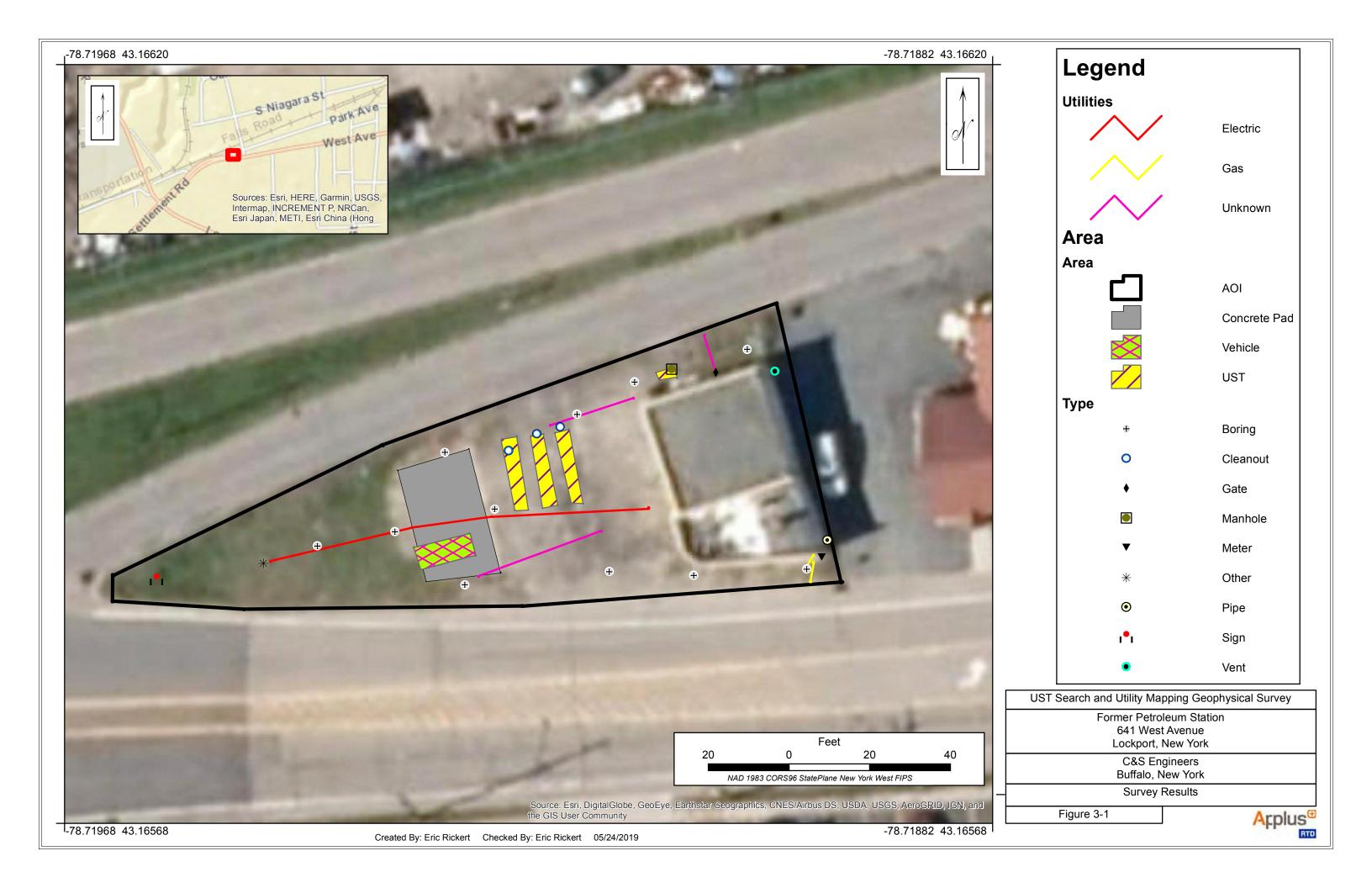
The RadioDetection (RD) method was used to locate metallic utilities. The RadioDetection RD8000 precision locator is designed for optimal locating performance for all industries and utilities. RD delivers a powerful digital signal analysis platform and provides the operator with a comprehensive suite of reliable and accurate signals. The multifunctional RD8000 range represents RadioDetection's most advanced pipe, cable and RF marker locators, offering a wide choice of locate functions and advanced connectivity options.

Locators do not find pipes; they locate the magnetic field around a pipe or utility, known as Electromagnetic Induction (EMI). This magnetic field is created by an alternating current traveling along the line. The magnetic field forms a cylindrical shape around the utility and is known as the signal. There are two types of locations methods, passive and active.

Passive refers to the natural energy traveling along a pipe, typically in the form of power (50/60Hz energy) radiating along a pipe or radio from very low frequency waves emanating through the air and ground. Active location method is based on the practice of applying a signal to the ground or to a utility. There are three ways to perform an active locate; direct connection (connecting directing to a utility), signal clamp (clamping a utility pipe with a special clamp to induce signal), and induction (creating a magnetic field on the ground to energize the utilities nearby).

2.3.2 Field Design

The design of the RadioDetection survey was set up to trace the underground gas line using a passive survey mode and an active survey mode.


2.3.3 Quality Control

As part of the RadioDetection Survey, known points of origin (e.g. electric lines that are mapped to an electric service manhole and water lines that are mapped to a fire hydrant) are compared to suspected and unknown utilities. Comparisons are made to known utilities at the site and in the vicinity to unknown utilities to compare to possible ambient frequency response and level of response to induced frequencies.

3 SURVEY RESULTS

The survey was performed to determine if USTs are in the survey area and delineate in the field locations of utilities that could impact the proposed drilling program. The site address is located at 641 West Avenue in Lockport, New York. The survey area was defined area of interest was defined by onsite C&S Engineers representatives as the area between Park Avenue and West Avenue east of the western edge of the site building and including 5 feet west of the site building. The survey area is in general accordance with the emailed map dated April 11th, 2019. Figure 3-1 shows the location of surface features, the interpreted results and the location of three (3) USTs and a possible UST. Surface features that appear in the EM data include a vehicle, reinforced concrete pad, the site building and associated debris, the site building. The EM data were preliminarily processed in the field for QC of data.

Figures 3-3 to 3-5 are site photos showing site conditions at the time of the survey. Figure 3-5 is a site photo showing the interpreted location of the gas line as marked in the field and the proposed location of a boring. Figure 3-6 is a representative GPR transect that shows the location of the three (3) USTs detected at the site.

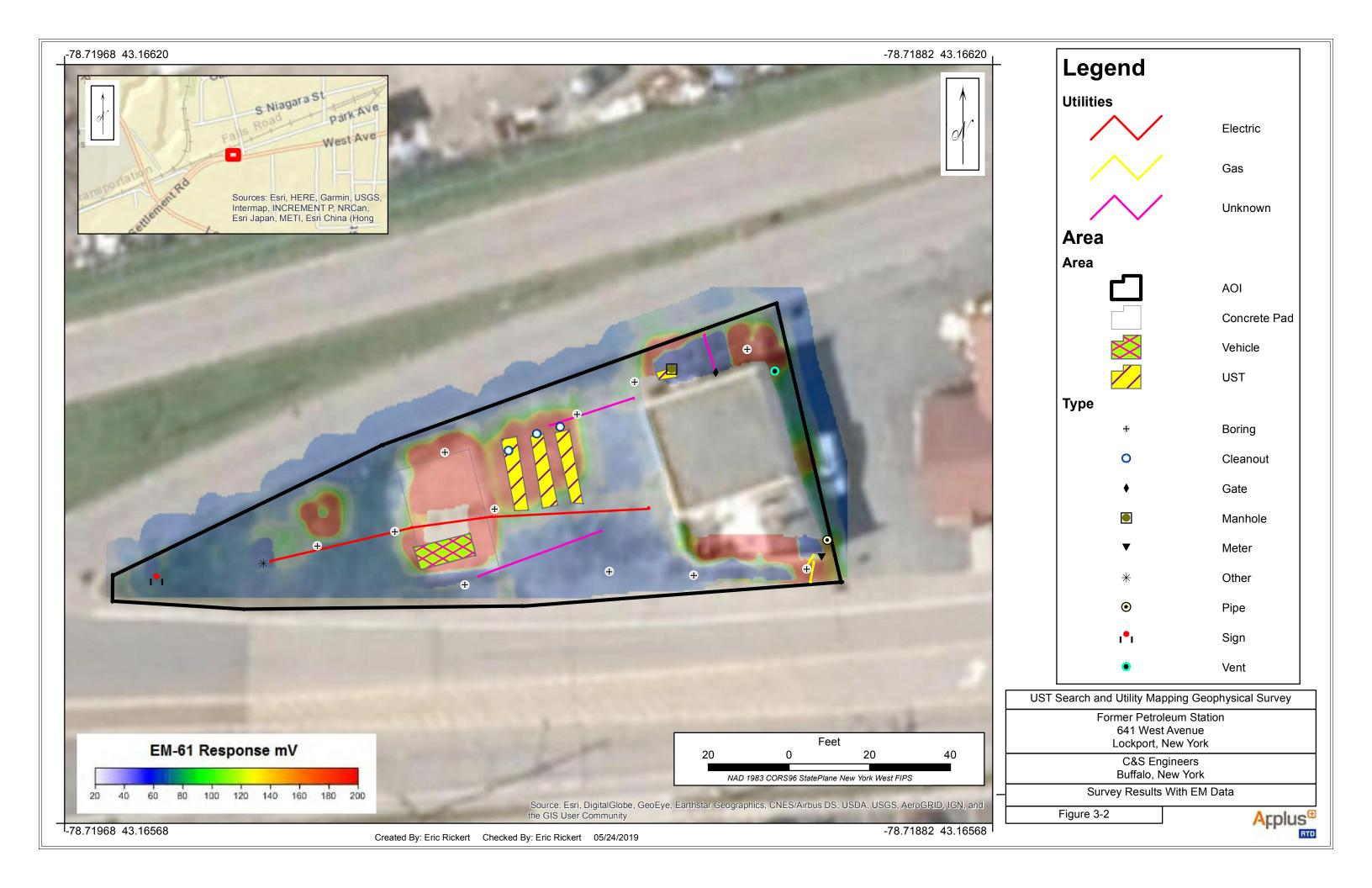


Figure 3-3 Site Conditions

Figure 3-4 Site Conditions: Showing Locations of USTs

Figure 3-5 Site Conditions: Showing Location Gas Line as Marked-in-Field

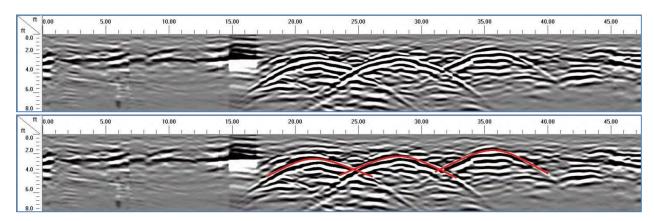


Figure 3-6 East West GPR Transect. Crossing 3 USTs – Shown in Red in Bottom

4 SUMMARY

In summary, approximately 0.15 acres of EM data and 56 lines of GPR were acquired at the survey area at a former petroleum station site located at 641 West Avenue in Lockport, New York. The survey was designed to determine if USTs were in the survey area and delineate utilities that may impact the proposed drilling. The area of interest was defined by onsite C&S Engineers representatives.

Three USTs were noted in the central portion of the site. An additional smaller possible UST was noted on the northern edge of the site building. Several utilities were noted and marked in the field at the approximate locations of the proposed boring locations. A preliminary map of the results, including the locations of the utilities was emailed to Jerel J. Bogdan of C&S Engineers on April 19th.

.

5 LIMITATIONS

Applus RTD performs geophysical services (for locating utilities, subsurface features) in compliance with latest available industry standard practices and guidance. Although these guidance's establish criteria for stringent quality control, it must be understood that due to the complexities in the electrical properties inherent in various materials (i.e. dielectrics) these methods have limitations. As a result of these conditions some utilities or objects may go undetected by geophysics and may require other methods to identify them. Therefore Applus RTD makes no guarantee with respect to the location of any subsurface objects.

APPENDIX G
Data Usability Summary Report (DUSR)